
NCURSES Programming HOWTO
Pradeep Padala
ppadala@gmail.com

Thomas E. Dickey
dickey@invisible-island.net

v2.1, 2024-09-08

Revision History
Revision 2.1 2024-09-08 Revised by: dickey
Fixes for the sample programs. Remove obsolete mailing addresses. Update publication date.
Revision 2.0 2022-12-03 Revised by: dickey
Fixes for the sample programs, Correct documentation errata.
Revision 1.9 2005-06-20 Revised by: ppadala
The license has been changed to the MIT-style license used by NCURSES. Note that the programs are also re-licensed under this.
Revision 1.8 2005-06-17 Revised by: ppadala
Lots of updates. Added references and perl examples. Changes to examples. Many grammatical and stylistic changes to the content. Changes to NCURSES history.
Revision 1.7.1 2002-06-25 Revised by: ppadala
Added a README file for building and instructions for building from source.
Revision 1.7 2002-06-25 Revised by: ppadala
Added "Other formats" section and made a lot of fancy changes to the programs. Inlining of programs is gone.
Revision 1.6.1 2002-02-24 Revised by: ppadala
Removed the old Changelog section, cleaned the makefiles
Revision 1.6 2002-02-16 Revised by: ppadala
Corrected a lot of spelling mistakes, added ACS variables section
Revision 1.5 2002-01-05 Revised by: ppadala
Changed structure to present proper TOC
Revision 1.3.1 2001-07-26 Revised by: ppadala
Corrected maintainers paragraph, Corrected stable release number
Revision 1.3 2001-07-24 Revised by: ppadala
Added copyright notices to main document (LDP license) and programs (GPL), Corrected printw_example.
Revision 1.2 2001-06-05 Revised by: ppadala
Incorporated ravi’s changes. Mainly to introduction, menu, form, justforfun sections
Revision 1.1 2001-05-22 Revised by: ppadala
Added "a word about window" section, Added scanw_example.

This document is intended to be an "All in One" guide for programming with ncurses and its
sister libraries. We graduate from a simple "Hello World" program to more complex form
manipulation. No prior experience in ncurses is assumed. Send comments to this address
(mailto:bug-ncurses@gnu.org)

1

NCURSES Programming HOWTO

1. Introduction

In the olden days of teletype terminals, terminals were away from computers and were connected to them
through serial cables. The terminals could be configured by sending a series of bytes. All the capabilities
(such as moving the cursor to a new location, erasing part of the screen, scrolling the screen, changing
modes, etc.) of terminals could be accessed through these series of bytes. These control sequences are
usually called escape sequences, because they start with an escape(0x1B) character. Even today, with
proper emulation, we can send escape sequences to the emulator and achieve the same effect on a
terminal window.

Suppose you wanted to print a line in color. Try typing this on your console.

echo "^[[0;31;40mIn Color"

The first character is an escape character, which looks like two characters ^ and [. To be able to print it,
you have to press CTRL+V and then the ESC key. All the others are normal printable characters. You
should be able to see the string "In Color" in red. It stays that way and to revert back to the original mode
type this.

echo "^[[0;37;40m"

Now, what do these magic characters mean? Difficult to comprehend? They might even be different for
different terminals. So the designers of UNIX invented a mechanism named termcap. It is a file that
lists all the capabilities of a particular terminal, along with the escape sequences needed to achieve a
particular effect. In the later years, this was replaced by terminfo. Without delving too much into
details, this mechanism allows application programs to query the terminfo database and obtain the
control characters to be sent to a terminal or terminal emulator.

1.1. What is NCURSES?

You might be wondering, what the import of all this technical gibberish is. In the above scenario, every
application program is supposed to query the terminfo and perform the necessary stuff (sending control
characters, etc.). It soon became difficult to manage this complexity and this gave birth to ’CURSES’.
Curses is a pun on the name "cursor optimization". The Curses library forms a wrapper over working
with raw terminal codes, and provides highly flexible and efficient API (Application Programming
Interface). It provides functions to move the cursor, create windows, produce colors, play with mouse,
etc. The application programs need not worry about the underlying terminal capabilities.

So what is NCURSES? NCURSES is a clone of the original System V Release 4.0 (SVr4) curses. It is a
freely distributable library, fully compatible with older version of curses. In short, it is a library of
functions that manages an application’s display on character-cell terminals. In the remainder of the
document, the terms curses and ncurses are used interchangeably.

2

NCURSES Programming HOWTO

A detailed history of NCURSES can be found in the NEWS file from the source distribution. The current
package is maintained by Thomas Dickey (mailto:dickey@invisible-island.net). You can contact the
maintainers at bug-ncurses@gnu.org (mailto:bug-ncurses@gnu.org).

1.2. What we can do with NCURSES

NCURSES not only creates a wrapper over terminal capabilities, but also gives a robust framework to
create nice looking UI (User Interface)s in text mode. It provides functions to create windows, etc. Its
sister libraries panel, menu and form provide an extension to the basic curses library. These libraries
usually come along with curses. One can create applications that contain multiple windows, menus,
panels and forms. Windows can be managed independently, can provide ’scrollability’ and even can be
hidden.

Menus provide the user with an easy command selection option. Forms allow the creation of easy-to-use
data entry and display windows. Panels extend the capabilities of ncurses to deal with overlapping and
stacked windows.

These are just some of the basic things we can do with ncurses. As we move along, We will see all the
capabilities of these libraries.

1.3. Where to get it

All right, now that you know what you can do with ncurses, you must be rearing to get started.
NCURSES is usually shipped with your installation. In case you don’t have the library or want to
compile it on your own, read on.

Compiling the package

NCURSES can be obtained from

• the home page at https://invisible-island.net (https://invisible-island.net/), as well as

• https://ftp.gnu.org/pub/gnu/ncurses/ or

• any of the mirror sites mentioned in https://www.gnu.org/order/ftp.html.

Read the README and INSTALL (https://invisible-island.net/ncurses/INSTALL.html) files for details
on to how to install it. It usually involves the following operations.

tar zxvf ncurses<version>.tar.gz # unzip and untar the archive
cd ncurses<version> # cd to the directory
./configure # configure the build according to your

environment
make # make it

3

NCURSES Programming HOWTO

su root # become root
make install # install it

1.4. Purpose/Scope of the document

This document is intended to be a "All in One" guide for programming with ncurses and its sister
libraries. We graduate from a simple "Hello World" program to more complex form manipulation. No
prior experience in ncurses is assumed. The writing is informal, but a lot of detail is provided for each of
the examples.

1.5. About the Programs

All the programs in the document are available in gzipped form here
(https://invisible-island.net/ncurses/howto/ncurses_programs.tar.gz). Ungzip and untar it. The directory
structure looks like this.

ncurses
|
|----> JustForFun -- just for fun programs
|----> basics -- basic programs
|----> demo -- output files go into this directory after make
| |
| |----> exe -- exe files of all example programs
|----> forms -- programs related to form library
|----> menus -- programs related to menus library
|----> panels -- programs related to panels library
|----> perl -- perl equivalents of the examples (contributed
| by Anuradha Ratnaweera)
|----> Makefile -- the top level Makefile
|----> README -- the top level README file. contains instructions
|----> COPYING -- copyright notice

The individual directories contain the following files.

Description of files in each directory

JustForFun

|
|----> hanoi.c -- The Towers of Hanoi Solver
|----> life.c -- The Game of Life demo
|----> magic.c -- An Odd Order Magic Square builder
|----> queens.c -- The famous N-Queens Solver
|----> shuffle.c -- A fun game, if you have time to kill
|----> tt.c -- A very trivial typing tutor

basics
|

4

NCURSES Programming HOWTO

|----> acs_vars.c -- ACS_ variables example
|----> hello_world.c -- Simple "Hello World" Program
|----> init_func_example.c -- Initialization functions example
|----> key_code.c -- Shows the scan code of the key pressed
|----> mouse_menu.c -- A menu accessible by mouse
|----> other_border.c -- Shows usage of other border functions apa
| -- rt from box()
|----> printw_example.c -- A very simple printw() example
|----> scanw_example.c -- A very simple getstr() example
|----> simple_attr.c -- A program that can print a c file with
| -- comments in attribute
|----> simple_color.c -- A simple example demonstrating colors
|----> simple_key.c -- A menu accessible with keyboard UP, DOWN
| -- arrows
|----> temp_leave.c -- Demonstrates temporarily leaving curses mode
|----> win_border.c -- Shows Creation of windows and borders
|----> with_chgat.c -- chgat() usage example

forms
|
|----> form_attrib.c -- Usage of field attributes
|----> form_options.c -- Usage of field options
|----> form_simple.c -- A simple form example
|----> form_win.c -- Demo of windows associated with forms

menus
|
|----> menu_attrib.c -- Usage of menu attributes
|----> menu_item_data.c -- Usage of item_name(), etc. functions
|----> menu_multi_column.c -- Creates multi columnar menus
|----> menu_scroll.c -- Demonstrates scrolling capability of menus
|----> menu_simple.c -- A simple menu accessed by arrow keys
|----> menu_toggle.c -- Creates multi valued menus and explains
| -- REQ_TOGGLE_ITEM
|----> menu_userptr.c -- Usage of user pointer
|----> menu_win.c -- Demo of windows associated with menus

panels
|
|----> panel_browse.c -- Panel browsing through tab. Usage of user
| -- pointer
|----> panel_hide.c -- Hiding and Un hiding of panels
|----> panel_resize.c -- Moving and resizing of panels
|----> panel_simple.c -- A simple panel example

perl
|----> 01-10.pl -- Perl equivalents of first ten example programs

There is a top level Makefile included in the main directory. It builds all the files and puts the
ready-to-use exes in demo/exe directory. You can also do selective make by going into the corresponding
directory. Each directory contains a README file explaining the purpose of each c file in the directory.

5

NCURSES Programming HOWTO

For every example, I have included path name for the file relative to the examples directory.

All the programs are released under the same license that is used by ncurses (MIT-style). This gives you
the ability to do pretty much anything other than claiming them as yours. Feel free to use them in your
programs as appropriate.

1.6. Other Formats of the document

This howto is also available in other formats. Here are the links to other formats of this document.

1.6.1. Alternative formats

• Acrobat PDF Format
(https://invisible-island.net/ncurses/howto/NCURSES-Programming-HOWTO.pdf)

• PostScript Format (https://invisible-island.net/ncurses/howto/NCURSES-Programming-HOWTO.ps)

• In Multiple HTML pages
(https://invisible-island.net/ncurses/howto/NCURSES-Programming-HOWTO-html.tar.gz)

• A single HTML file.
(https://invisible-island.net/ncurses/howto/NCURSES-Programming-HOWTO.html)

1.6.2. Building from source

The sources for this HOWTO can be retrieved from

https://github.com/ThomasDickey/ncurses-howto-snapshots

These tools were used to format the HOWTO and build the examples:

• docbook-utils (a Debian package)

• gcc

1.7. Credits

I thank Sharath and Emre Akbas for helping me with few sections. The introduction was initially written
by Sharath. I rewrote it with few excerpts taken from his initial work. Emre helped in writing printw and
scanw sections.

Perl equivalents of the example programs were contributed by Anuradha Ratnaweera.

6

NCURSES Programming HOWTO

Then comes Ravi Parimi, my dearest friend, who has been on this project before even one line was
written. He constantly bombarded me with suggestions and patiently reviewed the whole text. He also
checked each program on Linux and Solaris.

1.8. Wish List

This is the wish list, in the order of priority. If you have a wish or you want to work on completing the
wish, mail me (mailto:ppadala@gmail.com).

• Add examples to last parts of forms section.

• Prepare a Demo showing all the programs and allow the user to browse through description of each
program. Let the user compile and see the program in action. A dialog based interface is preferred.

• Add debug info. _tracef, _tracemouse stuff.

• Accessing termcap, terminfo using functions provided by ncurses package.

• Working on two terminals simultaneously.

• Add more stuff to miscellaneous section.

1.9. Copyright

Copyright © 2001 by Pradeep Padala.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, distribute with
modifications, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE ABOVE COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name(s) of the above copyright holders shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software without prior written

7

NCURSES Programming HOWTO

authorization.

2. Hello World !!!

Welcome to the world of curses. Before we plunge into the library and look into its various features, let’s
write a simple program and say hello to the world.

2.1. Compiling With the NCURSES Library

To use ncurses library functions, you have to include ncurses.h in your programs. To link the program
with ncurses the flag -lncurses should be added.

#include <ncurses.h>
.
.
.

compile and link: gcc <program file> -lncurses

Example 1. The Hello World !!! Program

#include <curses.h>

int
main(void)
{

initscr(); /* Start curses mode */
printw("Hello World !!!"); /* Print Hello World */
refresh(); /* Print it on to the real screen */
getch(); /* Wait for user input */
endwin(); /* End curses mode */

return 0;
}

2.2. Dissection

The above program prints "Hello World !!!" to the screen and exits. This program shows how to initialize
curses and do screen manipulation and end curses mode. Let’s dissect it line by line.

8

NCURSES Programming HOWTO

2.2.1. About initscr()

The function initscr() initializes the terminal in curses mode. In some implementations, it clears the
screen and presents a blank screen. To do any screen manipulation using curses package this has to be
called first. This function initializes the curses system and allocates memory for our present window
(called stdscr) and some other data-structures. Under extreme cases this function might fail due to
insufficient memory to allocate memory for curses library’s data structures.

After this is done, we can do a variety of initializations to customize our curses settings. These details
will be explained later .

2.2.2. The mysterious refresh()

The next line printw prints the string "Hello World !!!" on to the screen. This function is analogous to
normal printf in all respects except that it prints the data on a window called stdscr at the current (y,x)
co-ordinates. Since our present co-ordinates are at 0,0 the string is printed at the left hand corner of the
window.

This brings us to that mysterious refresh(). Well, when we called printw the data is actually written to an
imaginary window, which is not updated on the screen yet. The job of printw is to update a few flags and
data structures and write the data to a buffer corresponding to stdscr. In order to show it on the screen, we
need to call refresh() and tell the curses system to dump the contents on the screen.

The philosophy behind all this is to allow the programmer to do multiple updates on the imaginary
screen or windows and do a refresh once all his screen update is done. refresh() checks the window and
updates only the portion which has been changed. This improves performance and offers greater
flexibility too. But, it is sometimes frustrating to beginners. A common mistake committed by beginners
is to forget to call refresh() after they did some update through printw() class of functions. I still forget to
add it sometimes :-)

2.2.3. About endwin()

And finally don’t forget to end the curses mode. Otherwise your terminal might behave strangely after
the program quits. endwin() frees the memory taken by curses sub-system and its data structures and puts
the terminal in normal mode. This function must be called after you are done with the curses mode.

3. The Gory Details

Now that we have seen how to write a simple curses program let’s get into the details. There are many

9

NCURSES Programming HOWTO

functions that help customize what you see on screen and many features which can be put to full use.

Here we go...

4. Initialization

We now know that to initialize curses system the function initscr() has to be called. There are functions
which can be called after this initialization to customize our curses session. We may ask the curses
system to set the terminal in raw mode or initialize color or initialize the mouse, etc. Let’s discuss some
of the functions that are normally called immediately after initscr();

4.1. Initialization functions

4.2. raw() and cbreak()

Normally the terminal driver buffers the characters a user types until a new line or carriage return is
encountered. But most programs require that the characters be available as soon as the user types them.
The above two functions are used to disable line buffering. The difference between these two functions is
in the way control characters like suspend (CTRL-Z), interrupt and quit (CTRL-C) are passed to the
program. In the raw() mode these characters are directly passed to the program without generating a
signal. In the cbreak() mode these control characters are interpreted as any other character by the
terminal driver. I personally prefer to use raw() as I can exercise greater control over what the user does.

4.3. echo() and noecho()

These functions control the echoing of characters typed by the user to the terminal. noecho() switches
off echoing. The reason you might want to do this is to gain more control over echoing or to suppress
unnecessary echoing while taking input from the user through the getch(), etc. functions. Most of the
interactive programs call noecho() at initialization and do the echoing of characters in a controlled
manner. It gives the programmer the flexibility of echoing characters at any place in the window without
updating current (y,x) co-ordinates.

4.4. keypad()

This is my favorite initialization function. It enables the reading of function keys like F1, F2, arrow keys,
etc. Almost every interactive program enables this, as arrow keys are a major part of any User Interface.

10

NCURSES Programming HOWTO

Do keypad(stdscr, TRUE) to enable this feature for the regular screen (stdscr). You will learn more
about key management in later sections of this document.

4.5. halfdelay()

This function, though not used very often, is a useful one at times. halfdelay()is called to enable the
half-delay mode, which is similar to the cbreak() mode in that characters typed are immediately available
to program. However, it waits for ’X’ tenths of a second for input and then returns ERR, if no input is
available. ’X’ is the timeout value passed to the function halfdelay(). This function is useful when you
want to ask the user for input, and if he doesn’t respond with in certain time, we can do some thing else.
One possible example is a timeout at the password prompt.

4.6. Miscellaneous Initialization functions

There are few more functions which are called at initialization to customize curses behavior. They are
not used as extensively as those mentioned above. Some of them are explained where appropriate.

4.7. An Example

Let’s write a program which will clarify the usage of these functions.

Example 2. Initialization Function Usage example

#include <curses.h>

int
main(void)
{

int ch;

initscr(); /* Start curses mode */
raw(); /* Line buffering disabled */
keypad(stdscr, TRUE); /* We get F1, F2 etc.. */
noecho(); /* Don’t echo() while we do getch */

printw("Type any character to see it in bold\n");
ch = getch(); /* If raw() hadn’t been called

* we have to press enter before it

* gets to the program */
if (ch == KEY_F(1)) /* Without keypad enabled this will */

printw("F1 Key pressed"); /* not get to us either */
/* Without noecho() some ugly escape

* characters might have been printed

* on screen */
else {

11

NCURSES Programming HOWTO

printw("The pressed key is ");
attron(A_BOLD);
printw("%c", ch);
attroff(A_BOLD);

}
refresh(); /* Print it on to the real screen */
getch(); /* Wait for user input */
endwin(); /* End curses mode */

return 0;
}

This program is self-explanatory. But I used functions which aren’t explained yet. The function getch()

is used to get a character from user. It is equivalent to normal getchar() except that we can disable the
line buffering to avoid <enter> after input. Look for more about getch()and reading keys in the key
management section . The functions attron and attroff are used to switch some attributes on and off
respectively. In the example I used them to print the character in bold. These functions are explained in
detail later.

5. A Word about Windows

Before we plunge into the myriad ncurses functions, let me clear few things about windows. Windows
are explained in detail in following sections

A Window is an imaginary screen defined by curses system. A window does not mean a bordered
window which you usually see on Win9X platforms. When curses is initialized, it creates a default
window named stdscr which represents your 80x25 (or the size of window in which you are running)
screen. If you are doing simple tasks like printing few strings, reading input, etc., you can safely use this
single window for all of your purposes. You can also create windows and call functions which explicitly
work on the specified window.

For example, if you call

printw("Hi There !!!");
refresh();

It prints the string on stdscr at the present cursor position. Similarly the call to refresh(), works on stdscr
only.

Say you have created windows then you have to call a function with a ’w’ added to the usual function.

wprintw(win, "Hi There !!!");
wrefresh(win);

12

NCURSES Programming HOWTO

As you will see in the rest of the document, naming of functions follow the same convention. For each
function there usually are three more functions.

printw(string); /* Print on stdscr at present cursor position */
mvprintw(y, x, string);/* Move to (y, x) then print string */
wprintw(win, string); /* Print on window win at present cursor position */

/* in the window */
mvwprintw(win, y, x, string); /* Move to (y, x) relative to window */

/* co-ordinates and then print */

Usually the w-less functions are macros which expand to corresponding w-function with stdscr as the
window parameter.

6. Output functions

I guess you can’t wait any more to see some action. Back to our odyssey of curses functions. Now that
curses is initialized, let’s interact with world.

There are three classes of functions which you can use to do output on screen.

1. addch() class: Print single character with attributes

2. printw() class: Print formatted output similar to printf()

3. addstr() class: Print strings

These functions can be used interchangeably and it is a matter of style as to which class is used. Let’s see
each one in detail.

6.1. addch() class of functions

These functions put a single character into the current cursor location and advance the position of the
cursor. You can give the character to be printed but they usually are used to print a character with some
attributes. Attributes are explained in detail in later sections of the document. If a character is associated
with an attribute(bold, reverse video etc.), when curses prints the character, it is printed in that attribute.

In order to combine a character with some attributes, you have two options:

• By OR’ing a single character with the desired attribute macros. These attribute macros could be found
in the header file ncurses.h. For example, you want to print a character ch(of type char) bold and
underlined, you would call addch() as below.

addch(ch | A_BOLD | A_UNDERLINE);

13

NCURSES Programming HOWTO

• By using functions like attrset(),attron(),attroff(). These functions are explained in the
Attributes section. Briefly, they manipulate the current attributes of the given window. Once set, the
character printed in the window are associated with the attributes until it is turned off.

Additionally, curses provides some special characters for character-based graphics. You can draw
tables, horizontal or vertical lines, etc. You can find all available characters in the header file
ncurses.h. Try looking for macros beginning with ACS_ in this file.

6.2. mvaddch(), waddch() and mvwaddch()

mvaddch() is used to move the cursor to a given point, and then print. Thus, the calls:

move(row,col); /* moves the cursor to rowth row and colth column */
addch(ch);

can be replaced by

mvaddch(row,col,ch);

waddch() is similar to addch(), except that it adds a character into the given window. (Note that
addch() adds a character into the window stdscr.)

In a similar fashion mvwaddch() function is used to add a character into the given window at the given
coordinates.

Now, we are familiar with the basic output function addch(). But, if we want to print a string, it would
be very annoying to print it character by character. Fortunately, ncurses provides printf-like or
puts-like functions.

6.3. printw() class of functions

These functions are similar to printf() with the added capability of printing at any position on the
screen.

6.3.1. printw() and mvprintw

These two functions work much like printf(). mvprintw() can be used to move the cursor to a
position and then print. If you want to move the cursor first and then print using printw() function, use
move() first and then use printw() though I see no point why one should avoid using mvprintw(),
you have the flexibility to manipulate.

14

NCURSES Programming HOWTO

6.3.2. wprintw() and mvwprintw

These two functions are similar to above two except that they print in the corresponding window given as
argument.

6.3.3. vw_printw()

This function is similar to vprintf(). This can be used when variable number of arguments are to be
printed.

6.3.4. A Simple printw example

Example 3. A Simple printw example

#include <curses.h>
#include <string.h>

int
main(void)
{

char mesg[] = "Just a string"; /* message to be appeared on the screen */
int row, col; /* to store the number of rows and *

* the number of columns of the screen */
initscr(); /* start the curses mode */
getmaxyx(stdscr, row, col); /* get the number of rows and columns */
mvprintw(row / 2, (col - (int) strlen(mesg)) / 2, "%s", mesg);
/* print the message at the center of the screen */
mvprintw(row - 2, 0, "This screen has %d rows and %d columns\n", row, col);
printw("Try resizing your window(if possible) and then run this program again");
refresh();
getch();
endwin();

return 0;
}

Above program demonstrates how easy it is to use printw. You just feed the coordinates and the
message to be appeared on the screen, then it does what you want.

The above program introduces us to a new function getmaxyx(), a macro defined in ncurses.h. It
gives the number of columns and the number of rows in a given window. getmaxyx() does this by
updating the variables given to it. Since getmaxyx() is not a function we don’t pass pointers to it, we
just give two integer variables.

15

NCURSES Programming HOWTO

6.4. addstr() class of functions

addstr() is used to put a character string into a given window. This function is similar to calling
addch() once for each character in a given string. This is true for all output functions. There are other
functions from this family such as mvaddstr(),mvwaddstr() and waddstr(), which obey the
naming convention of curses.(e.g. mvaddstr() is similar to the respective calls move() and then addstr().)
Another function of this family is addnstr(), which takes an integer parameter(say n) additionally. This
function puts at most n characters into the screen. If n is negative, then the entire string will be added.

6.5. A word of caution

All these functions take y co-ordinate first and then x in their arguments. A common mistake by
beginners is to pass x,y in that order. If you are doing too many manipulations of (y,x) co-ordinates, think
of dividing the screen into windows and manipulate each one separately. Windows are explained in the
windows section.

7. Input functions

Well, printing without taking input, is boring. Let’s see functions which allow us to get input from user.
These functions also can be divided into three categories.

1. getch() class: Get a character

2. scanw() class: Get formatted input

3. getstr() class: Get strings

7.1. getch() class of functions

These functions read a single character from the terminal. But there are several subtle facts to consider.
For example if you don’t use the function cbreak(), curses will not read your input characters
contiguously but will begin read them only after a new line or an EOF is encountered. In order to avoid
this, the cbreak() function must used so that characters are immediately available to your program.
Another widely used function is noecho(). As the name suggests, when this function is set (used), the
characters that are keyed in by the user will not show up on the screen. The two functions cbreak() and
noecho() are typical examples of key management. Functions of this genre are explained in the key
management section .

16

NCURSES Programming HOWTO

7.2. scanw() class of functions

These functions are similar to scanf() with the added capability of getting the input from any location
on the screen.

7.2.1. scanw() and mvscanw

The usage of these functions is similar to that of sscanf(), where the line to be scanned is provided by
wgetstr() function. That is, these functions call to wgetstr() function(explained below) and uses the
resulting line for a scan.

7.2.2. wscanw() and mvwscanw()

These are similar to above two functions except that they read from a window, which is supplied as one
of the arguments to these functions.

7.2.3. vw_scanw()

This function is similar to vscanf(). This can be used when a variable number of arguments are to be
scanned.

7.3. getstr() class of functions

These functions are used to get strings from the terminal. In essence, this function performs the same
task as would be achieved by a series of calls to getch() until a newline, carriage return, or end-of-file
is received. The resulting string of characters are pointed to by str, which is a character pointer
provided by the user.

7.4. Some examples

Example 4. A Simple scanw example

#include <curses.h>
#include <string.h>

int
main(void)
{

char mesg[] = "Enter a string: "; /* message to be appeared on the screen */
char str[80];
int row, col; /* to store the number of rows and *

17

NCURSES Programming HOWTO

* the number of columns of the screen */
initscr(); /* start the curses mode */
getmaxyx(stdscr, row, col); /* get the number of rows and columns */
mvprintw(row / 2, (col - (int) strlen(mesg)) / 2, "%s", mesg);
/* print the message at the center of the screen */
getstr(str);
mvprintw(LINES - 2, 0, "You Entered: %s", str);
getch();
endwin();

return 0;
}

8. Attributes

We have seen an example of how attributes can be used to print characters with some special effects.
Attributes, when set prudently, can present information in an easy, understandable manner. The following
program takes a C file as input and prints the file with comments in bold. Scan through the code.

Example 5. A Simple Attributes example

/* pager functionality by Joseph Spainhour" <spainhou@bellsouth.net> */
#include <curses.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

int ch, row, col;
int prev = EOF;
FILE *fp;
int y, x;

if (argc != 2) {
printf("Usage: %s <a c file name>\n", argv[0]);
exit(1);

}
fp = fopen(argv[1], "r");
if (fp == NULL) {

perror("Cannot open input file");
exit(1);

}
initscr(); /* Start curses mode */
getmaxyx(stdscr, row, col); /* find the boundaries of the screeen */
(void) col;
while ((ch = fgetc(fp)) != EOF) /* read the file till we reach the end */
{

getyx(stdscr, y, x); /* get the current cursor position */

18

NCURSES Programming HOWTO

if (y == (row - 1)) /* are we are at the end of the screen */
{

printw("<-Press Any Key->"); /* tell the user to press a key */
getch();
clear(); /* clear the screen */
move(0, 0); /* start at the beginning of the screen */

}
if (prev == ’/’ && ch == ’*’) /* If it is / and * then only

* switch bold on */
{

attron(A_BOLD); /* cut bold on */
getyx(stdscr, y, x); /* get the current cursor position */
move(y, x - 1); /* back up one space */
printw("%c%c", ’/’, ch); /* The actual printing is done here */

} else
printw("%c", ch);

refresh();
if (prev == ’*’ && ch == ’/’)

attroff(A_BOLD); /* Switch it off once we got *
* and then / */

prev = ch;
}
endwin(); /* End curses mode */
fclose(fp);
return 0;

}

Don’t worry about all those initialization and other crap. Concentrate on the while loop. It reads each
character in the file and searches for the pattern /*. Once it spots the pattern, it switches the BOLD
attribute on with attron() . When we get the pattern */ it is switched off by attroff() .

The above program also introduces us to two useful functions getyx() and move(). The first function
gets the co-ordinates of the present cursor into the variables y, x. Since getyx() is a macro we don’t have
to pass pointers to variables. The function move() moves the cursor to the co-ordinates given to it.

The above program is really a simple one which doesn’t do much. On these lines one could write a more
useful program which reads a C file, parses it and prints it in different colors. One could even extend it to
other languages as well.

8.1. The details

Let’s get into more details of attributes. The functions attron(), attroff(), attrset() , and
their sister functions attr_get(), etc. can be used to switch attributes on/off , get attributes and
produce a colorful display.

19

NCURSES Programming HOWTO

The functions attron and attroff take a bit-mask of attributes and switch them on or off, respectively. The
following video attributes, which are defined in <curses.h> can be passed to these functions.

A_NORMAL Normal display (no highlight)
A_STANDOUT Best highlighting mode of the terminal.
A_UNDERLINE Underlining
A_REVERSE Reverse video
A_BLINK Blinking
A_DIM Half bright
A_BOLD Extra bright or bold
A_PROTECT Protected mode
A_INVIS Invisible or blank mode
A_ALTCHARSET Alternate character set
A_CHARTEXT Bit-mask to extract a character
COLOR_PAIR(n) Color-pair number n

The last one is the most colorful one :-) Colors are explained in the next sections (#COLOR).

We can OR(|) any number of above attributes to get a combined effect. If you wanted reverse video with
blinking characters you can use

attron(A_REVERSE | A_BLINK);

8.2. attron() vs attrset()

Then what is the difference between attron() and attrset()? attrset sets the attributes of window whereas
attron just switches on the attribute given to it. So attrset() fully overrides whatever attributes the window
previously had and sets it to the new attribute(s). Similarly attroff() just switches off the attribute(s) given
to it as an argument. This gives us the flexibility of managing attributes easily.But if you use them
carelessly you may loose track of what attributes the window has and garble the display. This is
especially true while managing menus with colors and highlighting. So decide on a consistent policy and
stick to it. You can always use standend() which is equivalent to attrset(A_NORMAL) which
turns off all attributes and brings you to normal mode.

8.3. attr_get()

The function attr_get() gets the current attributes and color pair of the window. Though we might not use
this as often as the above functions, this is useful in scanning areas of screen. Say we wanted to do some
complex update on screen and we are not sure what attribute each character is associated with. Then this
function can be used with either attrset or attron to produce the desired effect.

20

NCURSES Programming HOWTO

8.4. attr_ functions

There are series of functions like attr_set(), attr_on, etc. These are similar to above functions except that
they take parameters of type attr_t.

8.5. wattr functions

For each of the above functions we have a corresponding function with ’w’ which operates on a
particular window. The above functions operate on stdscr.

8.6. chgat() functions

The function chgat() is listed in the end of the man page curs_attr. It actually is a useful one. This
function can be used to set attributes for a group of characters without moving. I mean it !!! without
moving the cursor :-) It changes the attributes of a given number of characters starting at the current
cursor location.

We can give -1 as the character count to update till end of line. If you want to change attributes of
characters from current position to end of line, just use this.

chgat(-1, A_REVERSE, 0, NULL);

This function is useful when changing attributes for characters that are already on the screen. Move to
the character from which you want to change and change the attribute.

Other functions wchgat(), mvchgat(), wchgat() behave similarly except that the w functions operate on
the particular window. The mv functions first move the cursor then perform the work given to them.
Actually chgat is a macro which is replaced by a wchgat() with stdscr as the window. Most of the
"w-less" functions are macros.

Example 6. Chgat() Usage example

#include <curses.h>

int
main(void)
{

initscr(); /* Start curses mode */
start_color(); /* Start color functionality */

init_pair(1, COLOR_CYAN, COLOR_BLACK);
printw("A Big string which i didn’t care to type fully ");
mvchgat(0, 0, -1, A_BLINK, 1, NULL);
/*

21

NCURSES Programming HOWTO

* First two parameters specify the position at which to start

* Third parameter number of characters to update. -1 means till

* end of line

* Forth parameter is the normal attribute you wanted to give

* to the character

* Fifth is the color index. It is the index given during init_pair()

* use 0 if you didn’t want color

* Sixth one is always NULL

*/
refresh();
getch();
endwin(); /* End curses mode */
return 0;

}

This example also introduces us to the color world of curses. Colors will be explained in detail later. Use
0 for no color.

9. Windows

Windows form the most important concept in curses. You have seen the standard window stdscr above
where all the functions implicitly operated on this window. Now to make design even a simplest GUI,
you need to resort to windows. The main reason you may want to use windows is to manipulate parts of
the screen separately, for better efficiency, by updating only the windows that need to be changed and for
a better design. I would say the last reason is the most important in going for windows. You should
always strive for a better and easy-to-manage design in your programs. If you are writing big, complex
GUIs this is of pivotal importance before you start doing anything.

9.1. The basics

A Window can be created by calling the function newwin(). It doesn’t create any thing on the screen
actually. It allocates memory for a structure to manipulate the window and updates the structure with
data regarding the window such as its size, beginy, beginx, etc. Hence in curses, a window is just an
abstraction of an imaginary window, which can be manipulated independent of other parts of screen. The
function newwin() returns a pointer to structure WINDOW, which can be passed to window related
functions such as wprintw(), etc. Finally the window can be destroyed with delwin(). It will deallocate
the memory associated with the window structure.

9.2. Let there be a Window !!!

What fun is it, if a window is created and we can’t see it. So the fun part begins by displaying the
window. The function box() can be used to draw a border around the window. Let’s explore these

22

NCURSES Programming HOWTO

functions in more detail in this example.

Example 7. Window Border example

#include <curses.h>

WINDOW *create_newwin(int height, int width, int starty, int startx);
void destroy_win(WINDOW *local_win);

int
main(void)
{

WINDOW *my_win;
int startx, starty, width, height;
int ch;

initscr(); /* Start curses mode */
cbreak(); /* Line buffering disabled, Pass on

* every thing to me */
keypad(stdscr, TRUE); /* I need that nifty F1 */

height = 3;
width = 10;
starty = (LINES - height) / 2; /* Calculating for a center placement */
startx = (COLS - width) / 2; /* of the window */
printw("Press F1 to exit");
refresh();
my_win = create_newwin(height, width, starty, startx);

while ((ch = getch()) != KEY_F(1)) {
switch (ch) {
case KEY_LEFT:

destroy_win(my_win);
my_win = create_newwin(height, width, starty, --startx);
break;

case KEY_RIGHT:
destroy_win(my_win);
my_win = create_newwin(height, width, starty, ++startx);
break;

case KEY_UP:
destroy_win(my_win);
my_win = create_newwin(height, width, --starty, startx);
break;

case KEY_DOWN:
destroy_win(my_win);
my_win = create_newwin(height, width, ++starty, startx);
break;

}
}

endwin(); /* End curses mode */
return 0;

}

23

NCURSES Programming HOWTO

WINDOW *
create_newwin(int height, int width, int starty, int startx)
{

WINDOW *local_win;

local_win = newwin(height, width, starty, startx);
box(local_win, 0, 0); /* 0, 0 gives default characters

* for the vertical and horizontal

* lines */
wrefresh(local_win); /* Show that box */

return local_win;
}

void
destroy_win(WINDOW *local_win)
{

/* box(local_win, ’ ’, ’ ’); : This won’t produce the desired

* result of erasing the window. It will leave its four corners

* and so an ugly remnant of window.

*/
wborder(local_win, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’, ’ ’);
/* The parameters taken are

* 1. win: the window on which to operate

* 2. ls: character to be used for the left side of the window

* 3. rs: character to be used for the right side of the window

* 4. ts: character to be used for the top side of the window

* 5. bs: character to be used for the bottom side of the window

* 6. tl: character to be used for the top left corner of the window

* 7. tr: character to be used for the top right corner of the window

* 8. bl: character to be used for the bottom left corner of the window

* 9. br: character to be used for the bottom right corner of the window

*/
wrefresh(local_win);
delwin(local_win);

}

9.3. Explanation

Don’t scream. I know it is a big example. But I have to explain some important things here :-). This
program creates a rectangular window that can be moved with left, right, up, down arrow keys. It
repeatedly creates and destroys windows as user press a key. Don’t go beyond the screen limits.
Checking for those limits is left as an exercise for the reader. Let’s dissect it by line by line.

The create_newwin() function creates a window with newwin() and displays a border around it
with box. The function destroy_win() first erases the window from screen by painting a border with

24

NCURSES Programming HOWTO

’ ’ character and then calling delwin() to deallocate memory related to it. Depending on the key the
user presses, starty or startx is changed and a new window is created.

In the destroy_win, as you can see, I used wborder instead of box. The reason is written in the comments
(You missed it. I know. Read the code :-)). wborder draws a border around the window with the
characters given to it as the 4 corner points and the 4 lines. To put it clearly, if you have called wborder as
below:

wborder(win, ’|’, ’|’, ’-’, ’-’, ’+’, ’+’, ’+’, ’+’);

it produces something like

+------------+
| |
| |
| |
| |
| |
| |
+------------+

9.4. The other stuff in the example

You can also see in the above examples, that I have used the variables COLS, LINES which are
initialized to the screen sizes after initscr(). They can be useful in finding screen dimensions and finding
the center co-ordinate of the screen as above. The function getch() as usual gets the key from keyboard
and according to the key it does the corresponding work. This type of switch- case is very common in
any GUI based programs.

9.5. Other Border functions

Above program is grossly inefficient in that with each press of a key, a window is destroyed and another
is created. So let’s write a more efficient program which uses other border related functions.

The following program uses mvhline() and mvvline() to achieve similar effect. These two functions
are simple. They create a horizontal or vertical line of the specified length at the specified position.

Example 8. More border functions

#include <curses.h>

typedef struct _win_border_struct {
chtype ls, rs, ts, bs, tl, tr, bl, br;

} WIN_BORDER;

25

NCURSES Programming HOWTO

typedef struct _WIN_struct {

int startx, starty;
int height, width;
WIN_BORDER border;

} WIN;

void init_win_params(WIN * p_win);
void print_win_params(WIN * p_win);
void create_box(WIN * win, bool flag);

int
main(void)
{

WIN win;
int ch;

initscr(); /* Start curses mode */
start_color(); /* Start the color functionality */
cbreak(); /* Line buffering disabled, Pass on

* everty thing to me */
keypad(stdscr, TRUE); /* I need that nifty F1 */
noecho();
init_pair(1, COLOR_CYAN, COLOR_BLACK);

/* Initialize the window parameters */
init_win_params(&win);
print_win_params(&win);

attron(COLOR_PAIR(1));
printw("Press F1 to exit");
refresh();
attroff(COLOR_PAIR(1));

create_box(&win, TRUE);
while ((ch = getch()) != KEY_F(1)) {

switch (ch) {
case KEY_LEFT:

create_box(&win, FALSE);
--win.startx;
create_box(&win, TRUE);
break;

case KEY_RIGHT:
create_box(&win, FALSE);
++win.startx;
create_box(&win, TRUE);
break;

case KEY_UP:
create_box(&win, FALSE);
--win.starty;
create_box(&win, TRUE);
break;

26

NCURSES Programming HOWTO

case KEY_DOWN:
create_box(&win, FALSE);
++win.starty;
create_box(&win, TRUE);
break;

}
}
endwin(); /* End curses mode */
return 0;

}
void
init_win_params(WIN * p_win)
{

p_win->height = 3;
p_win->width = 10;
p_win->starty = (LINES - p_win->height) / 2;
p_win->startx = (COLS - p_win->width) / 2;

p_win->border.ls = ’|’;
p_win->border.rs = ’|’;
p_win->border.ts = ’-’;
p_win->border.bs = ’-’;
p_win->border.tl = ’+’;
p_win->border.tr = ’+’;
p_win->border.bl = ’+’;
p_win->border.br = ’+’;

}

void
print_win_params(WIN * p_win)
{
#ifdef _DEBUG

mvprintw(25, 0, "%d %d %d %d", p_win->startx, p_win->starty,
p_win->width, p_win->height);

refresh();
#else

(void) p_win;
#endif
}

void
create_box(WIN * p_win, bool flag)
{

int i, j;
int x, y, w, h;

x = p_win->startx;
y = p_win->starty;
w = p_win->width;
h = p_win->height;

if (flag == TRUE) {

27

NCURSES Programming HOWTO

mvaddch(y, x, p_win->border.tl);
mvaddch(y, x + w, p_win->border.tr);
mvaddch(y + h, x, p_win->border.bl);
mvaddch(y + h, x + w, p_win->border.br);
mvhline(y, x + 1, p_win->border.ts, w - 1);
mvhline(y + h, x + 1, p_win->border.bs, w - 1);
mvvline(y + 1, x, p_win->border.ls, h - 1);
mvvline(y + 1, x + w, p_win->border.rs, h - 1);

} else
for (j = y; j <= y + h; ++j)

for (i = x; i <= x + w; ++i)
mvaddch(j, i, ’ ’);

refresh();
}

10. Colors

10.1. The basics

Life seems dull with no colors. Curses has a nice mechanism to handle colors. Let’s get into the thick of
the things with a small program.

Example 9. A Simple Color example

#include <stdlib.h>
#include <string.h>
#include <curses.h>

void print_in_middle(WINDOW *win, int starty, int startx, int width, const char *string);

int
main(void)
{

initscr(); /* Start curses mode */
if (has_colors() == FALSE) {

endwin();
printf("Your terminal does not support color\n");
exit(1);

}
start_color(); /* Start color */
init_pair(1, COLOR_RED, COLOR_BLACK);

attron(COLOR_PAIR(1));
print_in_middle(stdscr, LINES / 2, 0, 0, "Viola !!! In color ...");
attroff(COLOR_PAIR(1));

28

NCURSES Programming HOWTO

getch();
endwin();

}
void
print_in_middle(WINDOW *win, int starty, int startx, int width, const char *string)
{

int length, x, y;
float temp;

if (win == NULL)
win = stdscr;

getyx(win, y, x);
if (startx != 0)

x = startx;
if (starty != 0)

y = starty;
if (width == 0)

width = 80;

length = (int) strlen(string);
temp = (float) (width - length) / 2;
x = startx + (int) temp;
mvwprintw(win, y, x, "%s", string);
refresh();

}

As you can see, to start using color, you should first call the function start_color(). After that, you
can use color capabilities of your terminals using various functions. To find out whether a terminal has
color capabilities or not, you can use has_colors() function, which returns FALSE if the terminal
does not support color.

Curses initializes all the colors supported by terminal when start_color() is called. These can be accessed
by the define constants like COLOR_BLACK , etc. Now to actually start using colors, you have to define
pairs. Colors are always used in pairs. That means you have to use the function init_pair() to define
the foreground and background for the pair number you give. After that that pair number can be used as a
normal attribute with COLOR_PAIR()function. This may seem to be cumbersome at first. But this
elegant solution allows us to manage color pairs very easily. To appreciate it, you have to look into the
the source code of "dialog", a utility for displaying dialog boxes from shell scripts. The developers have
defined foreground and background combinations for all the colors they might need and initialized at the
beginning. This makes it very easy to set attributes just by accessing a pair which we already have
defined as a constant.

The following colors are defined in curses.h. You can use these as parameters for various color
functions.

COLOR_BLACK 0
COLOR_RED 1
COLOR_GREEN 2
COLOR_YELLOW 3

29

NCURSES Programming HOWTO

COLOR_BLUE 4
COLOR_MAGENTA 5
COLOR_CYAN 6
COLOR_WHITE 7

10.2. Changing Color Definitions

The function init_color()can be used to change the rgb values for the colors defined by curses
initially. Say you wanted to lighten the intensity of red color by a minuscule. Then you can use this
function as

init_color(COLOR_RED, 700, 0, 0);
/* param 1 : color name

* param 2, 3, 4 : rgb content min = 0, max = 1000 */

If your terminal cannot change the color definitions, the function returns ERR. The function
can_change_color() can be used to find out whether the terminal has the capability of changing color
content or not. The rgb content is scaled from 0 to 1000. Initially RED color is defined with content
1000(r), 0(g), 0(b).

10.3. Color Content

The functions color_content() and pair_content() can be used to find the color content and
foreground, background combination for the pair.

11. Interfacing with the key board

11.1. The Basics

No GUI is complete without a strong user interface and to interact with the user, a curses program should
be sensitive to key presses or the mouse actions done by the user. Let’s deal with the keys first.

As you have seen in almost all of the above examples, it is very easy to get key input from the user. A
simple way of getting key presses is to use getch() function. The cbreak mode should be enabled to
read keys when you are interested in reading individual key hits rather than complete lines of text (which
usually end with a carriage return). keypad should be enabled to get the Functions keys, arrow keys, etc.
See the initialization section for details.

30

NCURSES Programming HOWTO

getch() returns an integer corresponding to the key pressed. If it is a normal character, the integer value
will be equivalent to the character. Otherwise it returns a number which can be matched with the
constants defined in curses.h. For example if the user presses F1, the integer returned is 265. This can
be checked using the macro KEY_F() defined in curses.h. This makes reading keys portable and easy to
manage.

For example, if you call getch() like this

int ch;

ch = getch();

getch() will wait for the user to press a key, (unless you specified a timeout) and when user presses a key,
the corresponding integer is returned. Then you can check the value returned with the constants defined
in curses.h to match against the keys you want.

The following code piece will do that job.

if(ch == KEY_LEFT)
printw("Left arrow is pressed\n");

Let’s write a small program which creates a menu which can be navigated by up and down arrows.

11.2. A Simple Key Usage example

Example 10. A Simple Key Usage example

#include <curses.h>

#define WIDTH 30
#define HEIGHT 10

int startx = 0;
int starty = 0;

const char *choices[] =
{

"Choice 1",
"Choice 2",
"Choice 3",
"Choice 4",
"Exit",

};
int n_choices = sizeof(choices) / sizeof(char *);
void print_menu(WINDOW *menu_win, int highlight);

int
main(void)

31

NCURSES Programming HOWTO

{
WINDOW *menu_win;
int highlight = 1;
int choice = 0;
int c;

initscr();
clear();
noecho();
cbreak(); /* Line buffering disabled. pass on everything */
startx = (80 - WIDTH) / 2;
starty = (24 - HEIGHT) / 2;

menu_win = newwin(HEIGHT, WIDTH, starty, startx);
keypad(menu_win, TRUE);
mvprintw(0, 0,

"Use arrow keys to go up and down, Press enter to select a choice");
refresh();
print_menu(menu_win, highlight);
while (1) {

c = wgetch(menu_win);
switch (c) {
case KEY_UP:

if (highlight == 1)
highlight = n_choices;

else
--highlight;

break;
case KEY_DOWN:

if (highlight == n_choices)
highlight = 1;

else
++highlight;

break;
case 10:

choice = highlight;
break;

default:
mvprintw(24, 0,

"Character pressed is = %3d Hopefully it can be printed as ’%c’",
c, c);

refresh();
break;

}
print_menu(menu_win, highlight);
if (choice != 0) /* User did a choice come out of the infinite loop */

break;
}
mvprintw(23, 0, "You chose choice %d with choice string %s\n", choice,

choices[choice - 1]);
clrtoeol();
refresh();
endwin();

32

NCURSES Programming HOWTO

return 0;
}

void
print_menu(WINDOW *menu_win, int highlight)
{

int x, y, i;

x = 2;
y = 2;
box(menu_win, 0, 0);
for (i = 0; i < n_choices; ++i) {

if (highlight == i + 1) /* Highlight the present choice */
{

wattron(menu_win, A_REVERSE);
mvwprintw(menu_win, y, x, "%s", choices[i]);
wattroff(menu_win, A_REVERSE);

} else
mvwprintw(menu_win, y, x, "%s", choices[i]);

++y;
}
wrefresh(menu_win);

}

12. Interfacing with the mouse

Now that you have seen how to get keys, lets do the same thing from mouse. Usually each UI allows the
user to interact with both keyboard and mouse.

12.1. The Basics

Before you do any thing else, the events you want to receive have to be enabled with mousemask().

mousemask(mmask_t newmask, /* The events you want to listen to */
mmask_t *oldmask) /* The old events mask */

The first parameter to above function is a bit mask of events you would like to listen. By default, all the
events are turned off. The bit mask ALL_MOUSE_EVENTS can be used to get all the events.

The following are all the event masks:

Name Description

BUTTON1_PRESSED mouse button 1 down
BUTTON1_RELEASED mouse button 1 up

33

NCURSES Programming HOWTO

BUTTON1_CLICKED mouse button 1 clicked
BUTTON1_DOUBLE_CLICKED mouse button 1 double clicked
BUTTON1_TRIPLE_CLICKED mouse button 1 triple clicked
BUTTON2_PRESSED mouse button 2 down
BUTTON2_RELEASED mouse button 2 up
BUTTON2_CLICKED mouse button 2 clicked
BUTTON2_DOUBLE_CLICKED mouse button 2 double clicked
BUTTON2_TRIPLE_CLICKED mouse button 2 triple clicked
BUTTON3_PRESSED mouse button 3 down
BUTTON3_RELEASED mouse button 3 up
BUTTON3_CLICKED mouse button 3 clicked
BUTTON3_DOUBLE_CLICKED mouse button 3 double clicked
BUTTON3_TRIPLE_CLICKED mouse button 3 triple clicked
BUTTON4_PRESSED mouse button 4 down
BUTTON4_RELEASED mouse button 4 up
BUTTON4_CLICKED mouse button 4 clicked
BUTTON4_DOUBLE_CLICKED mouse button 4 double clicked
BUTTON4_TRIPLE_CLICKED mouse button 4 triple clicked
BUTTON_SHIFT shift was down during button state change
BUTTON_CTRL control was down during button state change
BUTTON_ALT alt was down during button state change
ALL_MOUSE_EVENTS report all button state changes
REPORT_MOUSE_POSITION report mouse movement

12.2. Getting the events

Once a class of mouse events have been enabled, getch() class of functions return KEY_MOUSE every
time some mouse event happens. Then the mouse event can be retrieved with getmouse().

The code approximately looks like this:

MEVENT event;

ch = getch();
if(ch == KEY_MOUSE)

if(getmouse(&event) == OK)
. /* Do some thing with the event */
.
.

getmouse() returns the event into the pointer given to it. It is a structure which contains

typedef struct
{

short id; /* ID to distinguish multiple devices */
int x, y, z; /* event coordinates */
mmask_t bstate; /* button state bits */

}

34

NCURSES Programming HOWTO

The bstate is the main variable we are interested in. It tells the button state of the mouse.

Then with a code snippet like the following, we can find out what happened.

if(event.bstate & BUTTON1_PRESSED)
printw("Left Button Pressed");

12.3. Putting it all Together

That’s pretty much interfacing with mouse. Let’s create the same menu and enable mouse interaction. To
make things simpler, key handling is removed.

Example 11. Access the menu with mouse !!!

#include <string.h>
#include <curses.h>

#define WIDTH 30
#define HEIGHT 10

int startx = 0;
int starty = 0;

const char *choices[] =
{"Choice 1",
"Choice 2",
"Choice 3",
"Choice 4",
"Exit",

};

int n_choices = sizeof(choices) / sizeof(char *);

void print_menu(WINDOW *menu_win, int highlight);
void report_choice(int mouse_x, int mouse_y, int *p_choice);

int
main(void)
{

int c, choice = 0;
WINDOW *menu_win;
MEVENT event;

/* Initialize curses */
initscr();
clear();
noecho();
cbreak(); /* Line buffering disabled. pass everything */

35

NCURSES Programming HOWTO

/* Try to put the window in the middle of screen */
startx = (80 - WIDTH) / 2;
starty = (24 - HEIGHT) / 2;

attron(A_REVERSE);
mvprintw(23, 1,

"Click on Exit to quit (Works best in a virtual console)");
refresh();
attroff(A_REVERSE);

/* Print the menu for the first time */
menu_win = newwin(HEIGHT, WIDTH, starty, startx);
keypad(menu_win, TRUE);
print_menu(menu_win, 1);
/* Get all the mouse events */
mousemask(ALL_MOUSE_EVENTS, NULL);

while (1) {
c = wgetch(menu_win);
switch (c) {
case KEY_MOUSE:

if (getmouse(&event) == OK) { /* When the user clicks left mouse button */
if (event.bstate & BUTTON1_PRESSED) {

report_choice(event.x + 1, event.y + 1, &choice);
if (choice == -1) /* Exit chosen */

goto end;
mvprintw(22, 1,

"Choice made is : %d String Chosen is \"%10s\"",
choice, choices[choice - 1]);

refresh();
}

}
print_menu(menu_win, choice);
break;

}
}

end:
endwin();
return 0;

}

void
print_menu(WINDOW *menu_win, int highlight)
{

int x, y, i;

x = 2;
y = 2;
box(menu_win, 0, 0);
for (i = 0; i < n_choices; ++i) {

if (highlight == i + 1) {
wattron(menu_win, A_REVERSE);
mvwprintw(menu_win, y, x, "%s", choices[i]);

36

NCURSES Programming HOWTO

wattroff(menu_win, A_REVERSE);
} else

mvwprintw(menu_win, y, x, "%s", choices[i]);
++y;

}
wrefresh(menu_win);

}

/* Report the choice according to mouse position */
void
report_choice(int mouse_x, int mouse_y, int *p_choice)
{

int i, j, choice;

i = startx + 2;
j = starty + 3;

for (choice = 0; choice < n_choices; ++choice)
if (mouse_y == j + choice

&& mouse_x >= i
&& mouse_x <= i + (int) strlen(choices[choice])) {
if (choice == n_choices - 1)

*p_choice = -1;
else

*p_choice = choice + 1;
break;

}
}

12.4. Miscellaneous Functions

The functions mouse_trafo() and wmouse_trafo() can be used to convert to mouse co-ordinates to screen
relative co-ordinates. See curs_mouse(3X) man page for details.

The mouseinterval function sets the maximum time (in thousands of a second) that can elapse between
press and release events in order for them to be recognized as a click. This function returns the previous
interval value. The default is one fifth of a second.

13. Screen Manipulation

In this section, we will look into some functions, which allow us to manage the screen efficiently and to
write some fancy programs. This is especially important in writing games.

37

NCURSES Programming HOWTO

13.1. getyx() functions

The function getyx() can be used to find out the present cursor co-ordinates. It will fill the values of x
and y co-ordinates in the arguments given to it. Since getyx() is a macro you don’t have to pass the
address of the variables. It can be called as

getyx(win, y, x);
/* win: window pointer

* y, x: y, x co-ordinates will be put into this variables

*/

The function getparyx() gets the beginning co-ordinates of the sub window relative to the main window.
This is some times useful to update a sub window. When designing fancy stuff like writing multiple
menus, it becomes difficult to store the menu positions, their first option co-ordinates, etc. A simple
solution to this problem, is to create menus in sub windows and later find the starting co-ordinates of the
menus by using getparyx().

The functions getbegyx() and getmaxyx() store current window’s beginning and maximum co-ordinates.
These functions are useful in the same way as above in managing the windows and sub windows
effectively.

13.2. Screen Dumping

While writing games, some times it becomes necessary to store the state of the screen and restore it back
to the same state. The function scr_dump() can be used to dump the screen contents to a file given as an
argument. Later it can be restored by scr_restore function. These two simple functions can be used
effectively to maintain a fast moving game with changing scenarios.

13.3. Window Dumping

To store and restore windows, the functions putwin() and getwin() can be used. putwin() puts the
present window state into a file, which can be later restored by getwin().

The function copywin() can be used to copy a window completely onto another window. It takes the
source and destination windows as parameters and according to the rectangle specified, it copies the
rectangular region from source to destination window. Its last parameter specifies whether to overwrite or
just overlay the contents on to the destination window. If this argument is true, then the copying is
non-destructive.

38

NCURSES Programming HOWTO

14. Miscellaneous features

Now you know enough features to write a good curses program, with all bells and whistles. There are
some miscellaneous functions which are useful in various cases. Let’s go headlong into some of those.

14.1. curs_set()

This function can be used to make the cursor invisible. The parameter to this function should be

0 : invisible or
1 : normal or
2 : very visible.

14.2. Temporarily Leaving Curses mode

Some times you may want to get back to cooked mode (normal line buffering mode) temporarily. In such
a case you will first need to save the tty modes with a call to def_prog_mode() and then call
endwin() to end the curses mode. This will leave you in the original tty mode. To get back to curses
once you are done, call reset_prog_mode() . This function returns the tty to the state stored by
def_prog_mode(). Then do refresh(), and you are back to the curses mode. Here is an example
showing the sequence of things to be done.

Example 12. Temporarily Leaving Curses Mode

#include <stdlib.h>
#include <curses.h>

int
main(void)
{

initscr(); /* Start curses mode */
printw("Hello World !!!\n"); /* Print Hello World */
refresh(); /* Print it on to the real screen */
def_prog_mode(); /* Save the tty modes */
endwin(); /* End curses mode temporarily */
system("/bin/sh"); /* Do whatever you like in cooked mode */
reset_prog_mode(); /* Return to the previous tty mode */
/* stored by def_prog_mode() */
refresh(); /* Do refresh() to restore the */
/* Screen contents */
printw("Another String\n"); /* Back to curses use the full */
refresh(); /* capabilities of curses */
endwin(); /* End curses mode */

return 0;
}

39

NCURSES Programming HOWTO

14.3. ACS_ variables

If you have ever programmed in DOS, you know about those nifty characters in extended character set.
They are printable only on some terminals. NCURSES functions like box() use these characters. All
these variables start with ACS meaning alternative character set. You might have noticed me using these
characters in some of the programs above. Here is an example showing all the characters.

Example 13. ACS Variables Example

#include <curses.h>

int main(void)
{

initscr();

printw("Upper left corner "); addch(ACS_ULCORNER); printw("\n");
printw("Lower left corner "); addch(ACS_LLCORNER); printw("\n");
printw("Lower right corner "); addch(ACS_LRCORNER); printw("\n");
printw("Tee pointing right "); addch(ACS_LTEE); printw("\n");
printw("Tee pointing left "); addch(ACS_RTEE); printw("\n");
printw("Tee pointing up "); addch(ACS_BTEE); printw("\n");
printw("Tee pointing down "); addch(ACS_TTEE); printw("\n");
printw("Horizontal line "); addch(ACS_HLINE); printw("\n");
printw("Vertical line "); addch(ACS_VLINE); printw("\n");
printw("Large Plus or cross over "); addch(ACS_PLUS); printw("\n");
printw("Scan Line 1 "); addch(ACS_S1); printw("\n");
printw("Scan Line 3 "); addch(ACS_S3); printw("\n");
printw("Scan Line 7 "); addch(ACS_S7); printw("\n");
printw("Scan Line 9 "); addch(ACS_S9); printw("\n");
printw("Diamond "); addch(ACS_DIAMOND); printw("\n");
printw("Checker board (stipple) "); addch(ACS_CKBOARD); printw("\n");
printw("Degree Symbol "); addch(ACS_DEGREE); printw("\n");
printw("Plus/Minus Symbol "); addch(ACS_PLMINUS); printw("\n");
printw("Bullet "); addch(ACS_BULLET); printw("\n");
printw("Arrow Pointing Left "); addch(ACS_LARROW); printw("\n");
printw("Arrow Pointing Right "); addch(ACS_RARROW); printw("\n");
printw("Arrow Pointing Down "); addch(ACS_DARROW); printw("\n");
printw("Arrow Pointing Up "); addch(ACS_UARROW); printw("\n");
printw("Board of squares "); addch(ACS_BOARD); printw("\n");
printw("Lantern Symbol "); addch(ACS_LANTERN); printw("\n");
printw("Solid Square Block "); addch(ACS_BLOCK); printw("\n");
printw("Less/Equal sign "); addch(ACS_LEQUAL); printw("\n");
printw("Greater/Equal sign "); addch(ACS_GEQUAL); printw("\n");
printw("Pi "); addch(ACS_PI); printw("\n");
printw("Not equal "); addch(ACS_NEQUAL); printw("\n");
printw("UK pound sign "); addch(ACS_STERLING); printw("\n");

refresh();
getch();
endwin();

return 0;

40

NCURSES Programming HOWTO

}

15. Other libraries

Apart from the curses library, there are few text mode libraries, which provide more functionality and a
lot of features. The following sections explain three standard libraries which are usually distributed along
with curses.

16. Panel Library

Now that you are proficient in curses, you wanted to do some thing big. You created a lot of overlapping
windows to give a professional windows-type look. Unfortunately, it soon becomes difficult to manage
these. The multiple refreshes, updates plunge you into a nightmare. The overlapping windows create
blotches, whenever you forget to refresh the windows in the proper order.

Don’t despair. There is an elegant solution provided in panels library. In the words of developers of
ncurses

When your interface design is such that windows may dive deeper into the visibility stack or pop to the
top at runtime, the resulting book-keeping can be tedious and difficult to get right. Hence the panels
library.

If you have lot of overlapping windows, then panels library is the way to go. It obviates the need of doing
series of wnoutrefresh(), doupdate() and relieves the burden of doing it correctly(bottom up). The library
maintains information about the order of windows, their overlapping and update the screen properly. So
why wait? Let’s take a close peek into panels.

16.1. The Basics

Panel object is a window that is implicitly treated as part of a deck including all other panel objects. The
deck is treated as a stack with the top panel being completely visible and the other panels may or may
not be obscured according to their positions. So the basic idea is to create a stack of overlapping panels
and use panels library to display them correctly. There is a function similar to refresh() which, when
called , displays panels in the correct order. Functions are provided to hide or show panels, move panels,
change its size, etc. The overlapping problem is managed by the panels library during all the calls to
these functions.

The general flow of a panel program goes like this:

41

NCURSES Programming HOWTO

1. Create the windows (with newwin()) to be attached to the panels.

2. Create panels with the chosen visibility order. Stack them up according to the desired visibility. The
function new_panel() is used to created panels.

3. Call update_panels() to write the panels to the virtual screen in correct visibility order. Do a
doupdate() to show it on the screen.

4. Mainpulate the panels with show_panel(), hide_panel(), move_panel(), etc. Make use of helper
functions like panel_hidden() and panel_window(). Make use of user pointer to store custom data
for a panel. Use the functions set_panel_userptr() and panel_userptr() to set and get the user pointer
for a panel.

5. When you are done with the panel use del_panel() to delete the panel.

Let’s make the concepts clear, with some programs. The following is a simple program which creates 3
overlapping panels and shows them on the screen.

16.2. Compiling With the Panels Library

To use panels library functions, you have to include panel.h and to link the program with panels library
the flag -lpanel should be added along with -lncurses in that order.

#include <panel.h>
.
.
.

compile and link: gcc <program file> -lpanel -lncurses

Example 14. Panel basics

#include <panel.h>

int
main(void)
{

WINDOW *my_wins[3];
PANEL *my_panels[3];
int lines = 10, cols = 40, y = 2, x = 4, i;

initscr();
cbreak();
noecho();

/* Create windows for the panels */
my_wins[0] = newwin(lines, cols, y, x);
my_wins[1] = newwin(lines, cols, y + 1, x + 5);
my_wins[2] = newwin(lines, cols, y + 2, x + 10);

42

NCURSES Programming HOWTO

/*
* Create borders around the windows so that you can see the effect

* of panels

*/
for (i = 0; i < 3; ++i)

box(my_wins[i], 0, 0);

/* Attach a panel to each window */
/* Order is bottom up */
/* Push 0, order: stdscr-0 */
/* Push 1, order: stdscr-0-1 */
/* Push 2, order: stdscr-0-1-2 */
for (i = 0; i < 3; ++i)

my_panels[i] = new_panel(my_wins[i]);

/* Update the stacking order. Last-created panel will be on top */
update_panels();

/* Show it on the screen */
doupdate();

getch();

/* Deleting panels does not erase their window */
for (i = 0; i < 3; ++i)

del_panel(my_panels[i]);

endwin();
return 0;

}

As you can see, above program follows a simple flow as explained. The windows are created with
newwin() and then they are attached to panels with new_panel(). As we attach one panel after another,
the stack of panels gets updated. To put them on screen update_panels() and doupdate() are called.

16.3. Panel Window Browsing

A slightly complicated example is given below. This program creates 3 windows which can be cycled
through using tab. Have a look at the code.

Example 15. Panel Window Browsing Example

#include <string.h>
#include <panel.h>

#define NLINES 10
#define NCOLS 40

void init_wins(WINDOW **wins, int n);
void win_show(WINDOW *win, const char *label, int label_color);

43

NCURSES Programming HOWTO

void print_in_middle(WINDOW *win, int starty, int startx,
int width, const char *string, chtype color);

int
main(void)
{

WINDOW *my_wins[3];
PANEL *my_panels[3];
PANEL *top;
int ch;

/* Initialize curses */
initscr();
start_color();
cbreak();
noecho();
keypad(stdscr, TRUE);

/* Initialize all the colors */
init_pair(1, COLOR_RED, COLOR_BLACK);
init_pair(2, COLOR_GREEN, COLOR_BLACK);
init_pair(3, COLOR_BLUE, COLOR_BLACK);
init_pair(4, COLOR_CYAN, COLOR_BLACK);

init_wins(my_wins, 3);

/* Attach a panel to each window */
/* Order is bottom up */
my_panels[0] = new_panel(my_wins[0]); /* Push 0, order: stdscr-0 */
my_panels[1] = new_panel(my_wins[1]); /* Push 1, order: stdscr-0-1 */
my_panels[2] = new_panel(my_wins[2]); /* Push 2, order: stdscr-0-1-2 */

/* Set up the user pointers to the next panel */
set_panel_userptr(my_panels[0], my_panels[1]);
set_panel_userptr(my_panels[1], my_panels[2]);
set_panel_userptr(my_panels[2], my_panels[0]);

/* Update the stacking order. 2nd panel will be on top */
update_panels();

/* Show it on the screen */
attron(COLOR_PAIR(4));
mvprintw(LINES - 2, 0,

"Use tab to browse through the windows (F1 to Exit)");
attroff(COLOR_PAIR(4));
doupdate();

top = my_panels[2];
while ((ch = getch()) != KEY_F(1)) {

switch (ch) {
case 9:

top = (PANEL *) panel_userptr(top);
top_panel(top);

44

NCURSES Programming HOWTO

break;
}
update_panels();
doupdate();

}
endwin();
return 0;

}

/* Put all the windows */
void
init_wins(WINDOW **wins, int n)
{

int x, y, i;
char label[80];

y = 2;
x = 10;
for (i = 0; i < n; ++i) {

wins[i] = newwin(NLINES, NCOLS, y, x);
sprintf(label, "Window Number %d", i + 1);
win_show(wins[i], label, i + 1);
y += 3;
x += 7;

}
}

/* Show the window with a border and a label */
void
win_show(WINDOW *win, const char *label, int label_color)
{

int height, width;

getmaxyx(win, height, width);
(void) height;

box(win, 0, 0);
mvwaddch(win, 2, 0, ACS_LTEE);
mvwhline(win, 2, 1, ACS_HLINE, width - 2);
mvwaddch(win, 2, width - 1, ACS_RTEE);

print_in_middle(win, 1, 0, width, label, COLOR_PAIR(label_color));
}

void
print_in_middle(WINDOW *win, int starty, int startx,

int width, const char *string, chtype color)
{

int length, x, y;
float temp;

if (win == NULL)
win = stdscr;

45

NCURSES Programming HOWTO

getyx(win, y, x);
if (startx != 0)

x = startx;
if (starty != 0)

y = starty;
if (width == 0)

width = 80;

length = (int) strlen(string);
temp = (float) (width - length) / 2;
x = startx + (int) temp;
wattron(win, color);
mvwprintw(win, y, x, "%s", string);
wattroff(win, color);
refresh();

}

16.4. Using User Pointers

In the above example I used user pointers to find out the next window in the cycle. We can attach custom
information to the panel by specifying a user pointer, which can point to any information you want to
store. In this case I stored the pointer to the next panel in the cycle. User pointer for a panel can be set
with the function set_panel_userptr(). It can be accessed using the function panel_userptr()

which will return the user pointer for the panel given as argument. After finding the next panel in the
cycle, it is brought to the top by the function top_panel(). This function brings the panel given as
argument to the top of the panel stack.

16.5. Moving and Resizing Panels

The function move_panel() can be used to move a panel to the desired location. It does not change the
position of the panel in the stack. Make sure that you use move_panel() instead mvwin() on the window
associated with the panel.

Resizing a panel is slightly complex. There is no straight forward function just to resize the window
associated with a panel. A solution to resize a panel is to create a new window with the desired sizes,
change the window associated with the panel using replace_panel(). Don’t forget to delete the old
window. The window associated with a panel can be found by using the function panel_window().

The following program shows these concepts, in supposedly simple program. You can cycle through the
window with <TAB> as usual. To resize or move the active panel press ’r’ for resize ’m’ for moving.
Then use arrow keys to resize or move it to the desired way and press enter to end your resizing or
moving. This example makes use of user data to get the required data to do the operations.

46

NCURSES Programming HOWTO

Example 16. Panel Moving and Resizing example

#include <stdlib.h>
#include <string.h>
#include <panel.h>

typedef struct _PANEL_DATA {
int x, y, w, h;
char label[80];
int label_color;
PANEL *next;

} PANEL_DATA;

#define NLINES 10
#define NCOLS 40

void init_wins(WINDOW **wins, int n);
void win_show(WINDOW *win, const char *label, int label_color);
void print_in_middle(WINDOW *win, int starty, int startx,

int width, const char *string, chtype color);
void set_user_ptrs(PANEL **panels, int n);

int
main(void)
{

WINDOW *my_wins[3];
PANEL *my_panels[3];
PANEL_DATA *top;
PANEL *stack_top;
WINDOW *temp_win, *old_win;
int ch;
int newx, newy, neww, newh;
int size = FALSE, move = FALSE;

/* Initialize curses */
initscr();
start_color();
cbreak();
noecho();
keypad(stdscr, TRUE);

/* Initialize all the colors */
init_pair(1, COLOR_RED, COLOR_BLACK);
init_pair(2, COLOR_GREEN, COLOR_BLACK);
init_pair(3, COLOR_BLUE, COLOR_BLACK);
init_pair(4, COLOR_CYAN, COLOR_BLACK);

init_wins(my_wins, 3);

/* Attach a panel to each window */
/* Order is bottom up */
my_panels[0] = new_panel(my_wins[0]); /* Push 0, order: stdscr-0 */
my_panels[1] = new_panel(my_wins[1]); /* Push 1, order: stdscr-0-1 */

47

NCURSES Programming HOWTO

my_panels[2] = new_panel(my_wins[2]); /* Push 2, order: stdscr-0-1-2 */

set_user_ptrs(my_panels, 3);
/* Update the stacking order. 2nd panel will be on top */
update_panels();

/* Show it on the screen */
attron(COLOR_PAIR(4));
mvprintw(LINES - 3, 0, "Use ’m’ for moving, ’r’ for resizing");
mvprintw(LINES - 2, 0,

"Use tab to browse through the windows (F1 to Exit)");
attroff(COLOR_PAIR(4));
doupdate();

stack_top = my_panels[2];
top = (PANEL_DATA *) panel_userptr(stack_top);
newx = top->x;
newy = top->y;
neww = top->w;
newh = top->h;
while ((ch = getch()) != KEY_F(1)) {

switch (ch) {
case 9: /* Tab */

top = (PANEL_DATA *) panel_userptr(stack_top);
top_panel(top->next);
stack_top = top->next;
top = (PANEL_DATA *) panel_userptr(stack_top);
newx = top->x;
newy = top->y;
neww = top->w;
newh = top->h;
break;

case ’r’: /* Re-Size */
size = TRUE;
attron(COLOR_PAIR(4));
mvprintw(LINES - 4, 0,

"Entered Resizing :Use Arrow Keys to resize and press <ENTER> to end resizing");
refresh();
attroff(COLOR_PAIR(4));
break;

case ’m’: /* Move */
attron(COLOR_PAIR(4));
mvprintw(LINES - 4, 0,

"Entered Moving: Use Arrow Keys to Move and press <ENTER> to end moving");
refresh();
attroff(COLOR_PAIR(4));
move = TRUE;
break;

case KEY_LEFT:
if (size == TRUE) {

--newx;
++neww;

}

48

NCURSES Programming HOWTO

if (move == TRUE)
--newx;

break;
case KEY_RIGHT:

if (size == TRUE) {
++newx;
--neww;

}
if (move == TRUE)

++newx;
break;

case KEY_UP:
if (size == TRUE) {

--newy;
++newh;

}
if (move == TRUE)

--newy;
break;

case KEY_DOWN:
if (size == TRUE) {

++newy;
--newh;

}
if (move == TRUE)

++newy;
break;

case 10: /* Enter */
move(LINES - 4, 0);
clrtoeol();
refresh();
if (size == TRUE) {

old_win = panel_window(stack_top);
temp_win = newwin(newh, neww, newy, newx);
replace_panel(stack_top, temp_win);
win_show(temp_win, top->label, top->label_color);
delwin(old_win);
size = FALSE;

}
if (move == TRUE) {

move_panel(stack_top, newy, newx);
move = FALSE;

}
break;

}
attron(COLOR_PAIR(4));
mvprintw(LINES - 3, 0, "Use ’m’ for moving, ’r’ for resizing");
mvprintw(LINES - 2, 0,

"Use tab to browse through the windows (F1 to Exit)");
attroff(COLOR_PAIR(4));
refresh();
update_panels();

49

NCURSES Programming HOWTO

doupdate();
}
endwin();
return 0;

}

/* Put all the windows */
void
init_wins(WINDOW **wins, int n)
{

int x, y, i;
char label[80];

y = 2;
x = 10;
for (i = 0; i < n; ++i) {

wins[i] = newwin(NLINES, NCOLS, y, x);
sprintf(label, "Window Number %d", i + 1);
win_show(wins[i], label, i + 1);
y += 3;
x += 7;

}
}

/* Set the PANEL_DATA structures for individual panels */
void
set_user_ptrs(PANEL **panels, int n)
{

PANEL_DATA *ptrs;
WINDOW *win;
int x, y, w, h, i;
char temp[80];

ptrs = (PANEL_DATA *) calloc((size_t) n, sizeof(PANEL_DATA));

for (i = 0; i < n; ++i) {
win = panel_window(panels[i]);
getbegyx(win, y, x);
getmaxyx(win, h, w);
ptrs[i].x = x;
ptrs[i].y = y;
ptrs[i].w = w;
ptrs[i].h = h;
sprintf(temp, "Window Number %d", i + 1);
strcpy(ptrs[i].label, temp);
ptrs[i].label_color = i + 1;
if (i + 1 == n)

ptrs[i].next = panels[0];
else

ptrs[i].next = panels[i + 1];
set_panel_userptr(panels[i], &ptrs[i]);

}
}

50

NCURSES Programming HOWTO

/* Show the window with a border and a label */
void
win_show(WINDOW *win, const char *label, int label_color)
{

int height, width;

getmaxyx(win, height, width);
(void) height;

box(win, 0, 0);
mvwaddch(win, 2, 0, ACS_LTEE);
mvwhline(win, 2, 1, ACS_HLINE, width - 2);
mvwaddch(win, 2, width - 1, ACS_RTEE);

print_in_middle(win, 1, 0, width, label, COLOR_PAIR(label_color));
}

void
print_in_middle(WINDOW *win, int starty, int startx,

int width, const char *string, chtype color)
{

int length, x, y;
float temp;

if (win == NULL)
win = stdscr;

getyx(win, y, x);
if (startx != 0)

x = startx;
if (starty != 0)

y = starty;
if (width == 0)

width = 80;

length = (int) strlen(string);
temp = (float) (width - length) / 2;
x = startx + (int) temp;
wattron(win, color);
mvwprintw(win, y, x, "%s", string);
wattroff(win, color);
refresh();

}

Concentrate on the main while loop. Once it finds out the type of key pressed, it takes appropriate action.
If ’r’ is pressed resizing mode is started. After this the new sizes are updated as the user presses the arrow
keys. When the user presses <ENTER> present selection ends and panel is resized by using the concept
explained. While in resizing mode the program doesn’t show how the window is getting resized. It is left
as an exercise to the reader to print a dotted border while it gets resized to a new position.

51

NCURSES Programming HOWTO

When the user presses ’m’ the move mode starts. This is a bit simpler than resizing. As the arrow keys
are pressed the new position is updated and pressing of <ENTER> causes the panel to be moved by
calling the function move_panel().

In this program the user data which is represented as PANEL_DATA, plays very important role in finding
the associated information with a panel. As written in the comments, the PANEL_DATA stores the panel
sizes, label, label color and a pointer to the next panel in the cycle.

16.6. Hiding and Showing Panels

A Panel can be hidden by using the function hide_panel(). This function merely removes it form the
stack of panels, thus hiding it on the screen once you do update_panels() and doupdate(). It doesn’t
destroy the PANEL structure associated with the hidden panel. It can be shown again by using the
show_panel() function.

The following program shows the hiding of panels. Press ’a’ or ’b’ or ’c’ to show or hide first, second
and third windows respectively. It uses a user data with a small variable hide, which keeps track of
whether the window is hidden or not. For some reason the function panel_hidden() which tells
whether a panel is hidden or not is not working. A bug report was also presented by Michael Andres
here (http://www.geocrawler.com/archives/3/344/1999/9/0/2643549/)

Example 17. Panel Hiding and Showing example

#include <string.h>
#include <panel.h>

typedef struct _PANEL_DATA {
int hide; /* TRUE if panel is hidden */

} PANEL_DATA;

#define NLINES 10
#define NCOLS 40

void init_wins(WINDOW **wins, int n);
void win_show(WINDOW *win, const char *label, int label_color);
void print_in_middle(WINDOW *win, int starty, int startx,

int width, const char *string, chtype color);

int
main(void)
{

WINDOW *my_wins[3];
PANEL *my_panels[3];
PANEL_DATA panel_datas[3];
PANEL_DATA *temp;
int ch;

/* Initialize curses */

52

NCURSES Programming HOWTO

initscr();
start_color();
cbreak();
noecho();
keypad(stdscr, TRUE);

/* Initialize all the colors */
init_pair(1, COLOR_RED, COLOR_BLACK);
init_pair(2, COLOR_GREEN, COLOR_BLACK);
init_pair(3, COLOR_BLUE, COLOR_BLACK);
init_pair(4, COLOR_CYAN, COLOR_BLACK);

init_wins(my_wins, 3);

/* Attach a panel to each window */
/* Order is bottom up */
my_panels[0] = new_panel(my_wins[0]); /* Push 0, order: stdscr-0 */
my_panels[1] = new_panel(my_wins[1]); /* Push 1, order: stdscr-0-1 */
my_panels[2] = new_panel(my_wins[2]); /* Push 2, order: stdscr-0-1-2 */

/* Initialize panel data saying that nothing is hidden */
panel_datas[0].hide = FALSE;
panel_datas[1].hide = FALSE;
panel_datas[2].hide = FALSE;

set_panel_userptr(my_panels[0], &panel_datas[0]);
set_panel_userptr(my_panels[1], &panel_datas[1]);
set_panel_userptr(my_panels[2], &panel_datas[2]);

/* Update the stacking order. 2nd panel will be on top */
update_panels();

/* Show it on the screen */
attron(COLOR_PAIR(4));
mvprintw(LINES - 3, 0,

"Show or Hide a window with ’a’(first window) ’b’(Second Window) ’c’(Third Window)");
mvprintw(LINES - 2, 0, "F1 to Exit");

attroff(COLOR_PAIR(4));
doupdate();

while ((ch = getch()) != KEY_F(1)) {
switch (ch) {
case ’a’:

temp = (PANEL_DATA *) panel_userptr(my_panels[0]);
if (temp->hide == FALSE) {

hide_panel(my_panels[0]);
temp->hide = TRUE;

} else {
show_panel(my_panels[0]);
temp->hide = FALSE;

}
break;

53

NCURSES Programming HOWTO

case ’b’:
temp = (PANEL_DATA *) panel_userptr(my_panels[1]);
if (temp->hide == FALSE) {

hide_panel(my_panels[1]);
temp->hide = TRUE;

} else {
show_panel(my_panels[1]);
temp->hide = FALSE;

}
break;

case ’c’:
temp = (PANEL_DATA *) panel_userptr(my_panels[2]);
if (temp->hide == FALSE) {

hide_panel(my_panels[2]);
temp->hide = TRUE;

} else {
show_panel(my_panels[2]);
temp->hide = FALSE;

}
break;

}
update_panels();
doupdate();

}
endwin();
return 0;

}

/* Put all the windows */
void
init_wins(WINDOW **wins, int n)
{

int x, y, i;
char label[80];

y = 2;
x = 10;
for (i = 0; i < n; ++i) {

wins[i] = newwin(NLINES, NCOLS, y, x);
sprintf(label, "Window Number %d", i + 1);
win_show(wins[i], label, i + 1);
y += 3;
x += 7;

}
}

/* Show the window with a border and a label */
void
win_show(WINDOW *win, const char *label, int label_color)
{

int height, width;

getmaxyx(win, height, width);

54

NCURSES Programming HOWTO

(void) height;

box(win, 0, 0);
mvwaddch(win, 2, 0, ACS_LTEE);
mvwhline(win, 2, 1, ACS_HLINE, width - 2);
mvwaddch(win, 2, width - 1, ACS_RTEE);

print_in_middle(win, 1, 0, width, label, COLOR_PAIR(label_color));
}

void
print_in_middle(WINDOW *win, int starty, int startx,

int width, const char *string, chtype color)
{

int length, x, y;
float temp;

if (win == NULL)
win = stdscr;

getyx(win, y, x);
if (startx != 0)

x = startx;
if (starty != 0)

y = starty;
if (width == 0)

width = 80;

length = (int) strlen(string);
temp = (float) (width - length) / 2;
x = startx + (int) temp;
wattron(win, color);
mvwprintw(win, y, x, "%s", string);
wattroff(win, color);
refresh();

}

16.7. panel_above() and panel_below() Functions

The functions panel_above() and panel_below() can be used to find out the panel above and below
a panel. If the argument to these functions is NULL, then they return a pointer to bottom panel and top
panel respectively.

55

NCURSES Programming HOWTO

17. Menus Library

The menus library provides a nice extension to basic curses, through which you can create menus. It
provides a set of functions to create menus. But they have to be customized to give a nicer look, with
colors, etc. Let’s get into the details.

A menu is a screen display that assists the user to choose some subset of a given set of items. To put it
simple, a menu is a collection of items from which one or more items can be chosen. Some readers might
not be aware of multiple item selection capability. Menu library provides functionality to write menus
from which the user can chose more than one item as the preferred choice. This is dealt with in a later
section. Now it is time for some rudiments.

17.1. The Basics

To create menus, you first create items, and then post the menu to the display. After that, all the
processing of user responses is done in an elegant function menu_driver() which is the work horse of any
menu program.

The general flow of control of a menu program looks like this.

1. Initialize curses

2. Create items using new_item(). You can specify a name and description for the items.

3. Create the menu with new_menu() by specifying the items to be attached with.

4. Post the menu with menu_post() and refresh the screen.

5. Process the user requests with a loop and do necessary updates to menu with menu_driver.

6. Unpost the menu with menu_unpost()

7. Free the memory allocated to menu by free_menu()

8. Free the memory allocated to the items with free_item()

9. End curses

Let’s see a program which prints a simple menu and updates the current selection with up, down arrows.

17.2. Compiling With the Menu Library

To use menu library functions, you have to include menu.h and to link the program with menu library the
flag -lmenu should be added along with -lncurses in that order.

#include <menu.h>
.
.

56

NCURSES Programming HOWTO

.

compile and link: gcc <program file> -lmenu -lncurses

Example 18. Menu Basics

#include <stdlib.h>
#include <curses.h>
#include <menu.h>

#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define CTRLD 4

const char *choices[] =
{

"Choice 1",
"Choice 2",
"Choice 3",
"Choice 4",
"Exit",

};

int
main(void)
{

ITEM **my_items;
int c;
MENU *my_menu;
int n_choices, i;

initscr();
cbreak();
noecho();
keypad(stdscr, TRUE);

n_choices = ARRAY_SIZE(choices);
my_items = (ITEM **) calloc((size_t) (n_choices + 1), sizeof(ITEM *));

for (i = 0; i < n_choices; ++i)
my_items[i] = new_item(choices[i], choices[i]);

my_items[n_choices] = (ITEM *) NULL;

my_menu = new_menu((ITEM **) my_items);
mvprintw(LINES - 2, 0, "F1 to Exit");
post_menu(my_menu);
refresh();

while ((c = getch()) != KEY_F(1)) {
switch (c) {
case KEY_DOWN:

menu_driver(my_menu, REQ_DOWN_ITEM);
break;

57

NCURSES Programming HOWTO

case KEY_UP:
menu_driver(my_menu, REQ_UP_ITEM);
break;

}
}

free_item(my_items[0]);
free_item(my_items[1]);
free_menu(my_menu);
endwin();

}

This program demonstrates the basic concepts involved in creating a menu using menus library. First we
create the items using new_item() and then attach them to the menu with new_menu() function. After
posting the menu and refreshing the screen, the main processing loop starts. It reads user input and takes
corresponding action. The function menu_driver() is the main work horse of the menu system. The
second parameter to this function tells what’s to be done with the menu. According to the parameter,
menu_driver() does the corresponding task. The value can be either a menu navigational request, an ascii
character, or a KEY_MOUSE special key associated with a mouse event.

The menu_driver accepts following navigational requests.

REQ_LEFT_ITEM Move left to an item.
REQ_RIGHT_ITEM Move right to an item.
REQ_UP_ITEM Move up to an item.
REQ_DOWN_ITEM Move down to an item.
REQ_SCR_ULINE Scroll up a line.
REQ_SCR_DLINE Scroll down a line.
REQ_SCR_DPAGE Scroll down a page.
REQ_SCR_UPAGE Scroll up a page.
REQ_FIRST_ITEM Move to the first item.
REQ_LAST_ITEM Move to the last item.
REQ_NEXT_ITEM Move to the next item.
REQ_PREV_ITEM Move to the previous item.
REQ_TOGGLE_ITEM Select/deselect an item.
REQ_CLEAR_PATTERN Clear the menu pattern buffer.
REQ_BACK_PATTERN Delete the previous character from the pattern buffer.
REQ_NEXT_MATCH Move to the next item matching the pattern match.
REQ_PREV_MATCH Move to the previous item matching the pattern match.

Don’t get overwhelmed by the number of options. We will see them slowly one after another. The
options of interest in this example are REQ_UP_ITEM and REQ_DOWN_ITEM. These two options
when passed to menu_driver, menu driver updates the current item to one item up or down respectively.

58

NCURSES Programming HOWTO

17.3. Menu Driver: The work horse of the menu system

As you have seen in the above example, menu_driver plays an important role in updating the menu. It is
very important to understand various options it takes and what they do. As explained above, the second
parameter to menu_driver() can be either a navigational request, a printable character or a KEY_MOUSE
key. Let’s dissect the different navigational requests.

• REQ_LEFT_ITEM and REQ_RIGHT_ITEM

A Menu can be displayed with multiple columns for more than one item. This can be done by using
the menu_format()function. When a multi columnar menu is displayed these requests cause the
menu driver to move the current selection to left or right.

• REQ_UP_ITEM and REQ_DOWN_ITEM

These two options you have seen in the above example. These options when given, makes the
menu_driver to move the current selection to an item up or down.

• REQ_SCR_* options

The four options REQ_SCR_ULINE, REQ_SCR_DLINE, REQ_SCR_DPAGE, REQ_SCR_UPAGE
are related to scrolling. If all the items in the menu cannot be displayed in the menu sub window, then
the menu is scrollable. These requests can be given to the menu_driver to do the scrolling either one
line up, down or one page down or up respectively.

• REQ_FIRST_ITEM, REQ_LAST_ITEM, REQ_NEXT_ITEM and REQ_PREV_ITEM

These requests are self explanatory.

• REQ_TOGGLE_ITEM

This request when given, toggles the present selection. This option is to be used only in a multi valued
menu. So to use this request the option O_ONEVALUE must be off. This option can be made off or on
with set_menu_opts().

• Pattern Requests

Every menu has an associated pattern buffer, which is used to find the nearest match to the ascii
characters entered by the user. Whenever ascii characters are given to menu_driver, it puts in to the
pattern buffer. It also tries to find the nearest match to the pattern in the items list and moves current
selection to that item. The request REQ_CLEAR_PATTERN clears the pattern buffer. The request
REQ_BACK_PATTERN deletes the previous character in the pattern buffer. In case the pattern

59

NCURSES Programming HOWTO

matches more than one item then the matched items can be cycled through REQ_NEXT_MATCH and
REQ_PREV_MATCH which move the current selection to the next and previous matches respectively.

• Mouse Requests

In case of KEY_MOUSE requests, according to the mouse position an action is taken accordingly.
The action to be taken is explained in the man page as,

If the second argument is the KEY_MOUSE special key, the
associated mouse event is translated into one of the above
pre-defined requests. Currently only clicks in the user
window (e.g. inside the menu display area or the decora
tion window) are handled. If you click above the display
region of the menu, a REQ_SCR_ULINE is generated, if you
doubleclick a REQ_SCR_UPAGE is generated and if you
tripleclick a REQ_FIRST_ITEM is generated. If you click
below the display region of the menu, a REQ_SCR_DLINE is
generated, if you doubleclick a REQ_SCR_DPAGE is generated
and if you tripleclick a REQ_LAST_ITEM is generated. If
you click at an item inside the display area of the menu,
the menu cursor is positioned to that item.

Each of the above requests will be explained in the following lines with several examples whenever
appropriate.

17.4. Menu Windows

Every menu created is associated with a window and a sub window. The menu window displays any title
or border associated with the menu. The menu sub window displays the menu items currently available
for selection. But we didn’t specify any window or sub window in the simple example. When a window
is not specified, stdscr is taken as the main window, and then menu system calculates the sub window
size required for the display of items. Then items are displayed in the calculated sub window. So let’s
play with these windows and display a menu with a border and a title.

Example 19. Menu Windows Usage example

#include <stdlib.h>
#include <string.h>
#include <menu.h>

#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define CTRLD 4

const char *choices[] =
{

"Choice 1",
"Choice 2",
"Choice 3",

60

NCURSES Programming HOWTO

"Choice 4",
"Exit",
(char *) NULL,

};

void print_in_middle(WINDOW *win, int starty, int startx,
int width, const char *string, chtype color);

int
main(void)
{

ITEM **my_items;
int c;
MENU *my_menu;
WINDOW *my_menu_win;
int n_choices, i;

/* Initialize curses */
initscr();
start_color();
cbreak();
noecho();
keypad(stdscr, TRUE);
init_pair(1, COLOR_RED, COLOR_BLACK);

/* Create items */
n_choices = ARRAY_SIZE(choices);
my_items = (ITEM **) calloc((size_t) n_choices, sizeof(ITEM *));
for (i = 0; i < n_choices; ++i)

my_items[i] = new_item(choices[i], choices[i]);

/* Create menu */
my_menu = new_menu((ITEM **) my_items);

/* Create the window to be associated with the menu */
my_menu_win = newwin(10, 40, 4, 4);
keypad(my_menu_win, TRUE);

/* Set main window and sub window */
set_menu_win(my_menu, my_menu_win);
set_menu_sub(my_menu, derwin(my_menu_win, 6, 38, 3, 1));

/* Set menu mark to the string " * " */
set_menu_mark(my_menu, " * ");

/* Print a border around the main window and print a title */
box(my_menu_win, 0, 0);
print_in_middle(my_menu_win, 1, 0, 40, "My Menu", COLOR_PAIR(1));
mvwaddch(my_menu_win, 2, 0, ACS_LTEE);
mvwhline(my_menu_win, 2, 1, ACS_HLINE, 38);
mvwaddch(my_menu_win, 2, 39, ACS_RTEE);
mvprintw(LINES - 2, 0, "F1 to exit");
refresh();

61

NCURSES Programming HOWTO

/* Post the menu */
post_menu(my_menu);
wrefresh(my_menu_win);

while ((c = wgetch(my_menu_win)) != KEY_F(1)) {
switch (c) {
case KEY_DOWN:

menu_driver(my_menu, REQ_DOWN_ITEM);
break;

case KEY_UP:
menu_driver(my_menu, REQ_UP_ITEM);
break;

}
wrefresh(my_menu_win);

}

/* Unpost and free all the memory taken up */
unpost_menu(my_menu);
free_menu(my_menu);
for (i = 0; i < n_choices; ++i)

free_item(my_items[i]);
endwin();

}

void
print_in_middle(WINDOW *win, int starty, int startx,

int width, const char *string, chtype color)
{

int length, x, y;
float temp;

if (win == NULL)
win = stdscr;

getyx(win, y, x);
if (startx != 0)

x = startx;
if (starty != 0)

y = starty;
if (width == 0)

width = 80;

length = (int) strlen(string);
temp = (float) (width - length) / 2;
x = startx + (int) temp;
wattron(win, color);
mvwprintw(win, y, x, "%s", string);
wattroff(win, color);
refresh();

}

62

NCURSES Programming HOWTO

This example creates a menu with a title, border, a fancy line separating title and the items. As you can
see, in order to attach a window to a menu the function set_menu_win() has to be used. Then we attach
the sub window also. This displays the items in the sub window. You can also set the mark string which
gets displayed to the left of the selected item with set_menu_mark().

17.5. Scrolling Menus

If the sub window given for a window is not big enough to show all the items, then the menu will be
scrollable. When you are on the last item in the present list, if you send REQ_DOWN_ITEM, it gets
translated into REQ_SCR_DLINE and the menu scrolls by one item. You can manually give REQ_SCR_
operations to do scrolling. Let’s see how it can be done.

Example 20. Scrolling Menus example

#include <stdlib.h>
#include <string.h>
#include <curses.h>
#include <menu.h>

#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define CTRLD 4

const char *choices[] =
{

"Choice 1",
"Choice 2",
"Choice 3",
"Choice 4",
"Choice 5",
"Choice 6",
"Choice 7",
"Choice 8",
"Choice 9",
"Choice 10",
"Exit",
(char *) NULL,

};

void print_in_middle(WINDOW *win, int starty, int startx,
int width, const char *string, chtype color);

int
main(void)
{

ITEM **my_items;
int c;
MENU *my_menu;
WINDOW *my_menu_win;
int n_choices, i;

63

NCURSES Programming HOWTO

/* Initialize curses */
initscr();
start_color();
cbreak();
noecho();
keypad(stdscr, TRUE);
init_pair(1, COLOR_RED, COLOR_BLACK);
init_pair(2, COLOR_CYAN, COLOR_BLACK);

/* Create items */
n_choices = ARRAY_SIZE(choices);
my_items = (ITEM **) calloc((size_t) n_choices, sizeof(ITEM *));
for (i = 0; i < n_choices; ++i)

my_items[i] = new_item(choices[i], choices[i]);

/* Create menu */
my_menu = new_menu((ITEM **) my_items);

/* Create the window to be associated with the menu */
my_menu_win = newwin(10, 40, 4, 4);
keypad(my_menu_win, TRUE);

/* Set main window and sub window */
set_menu_win(my_menu, my_menu_win);
set_menu_sub(my_menu, derwin(my_menu_win, 6, 38, 3, 1));
set_menu_format(my_menu, 5, 1);

/* Set menu mark to the string " * " */
set_menu_mark(my_menu, " * ");

/* Print a border around the main window and print a title */
box(my_menu_win, 0, 0);
print_in_middle(my_menu_win, 1, 0, 40, "My Menu", COLOR_PAIR(1));
mvwaddch(my_menu_win, 2, 0, ACS_LTEE);
mvwhline(my_menu_win, 2, 1, ACS_HLINE, 38);
mvwaddch(my_menu_win, 2, 39, ACS_RTEE);

/* Post the menu */
post_menu(my_menu);
wrefresh(my_menu_win);

attron(COLOR_PAIR(2));
mvprintw(LINES - 2, 0,

"Use PageUp and PageDown to scroll down or up a page of items");
mvprintw(LINES - 1, 0, "Arrow Keys to navigate (F1 to Exit)");
attroff(COLOR_PAIR(2));
refresh();

while ((c = wgetch(my_menu_win)) != KEY_F(1)) {
switch (c) {
case KEY_DOWN:

menu_driver(my_menu, REQ_DOWN_ITEM);
break;

64

NCURSES Programming HOWTO

case KEY_UP:
menu_driver(my_menu, REQ_UP_ITEM);
break;

case KEY_NPAGE:
menu_driver(my_menu, REQ_SCR_DPAGE);
break;

case KEY_PPAGE:
menu_driver(my_menu, REQ_SCR_UPAGE);
break;

}
wrefresh(my_menu_win);

}

/* Unpost and free all the memory taken up */
unpost_menu(my_menu);
free_menu(my_menu);
for (i = 0; i < n_choices; ++i)

free_item(my_items[i]);
endwin();

}

void
print_in_middle(WINDOW *win, int starty, int startx,

int width, const char *string, chtype color)
{

int length, x, y;
float temp;

if (win == NULL)
win = stdscr;

getyx(win, y, x);
if (startx != 0)

x = startx;
if (starty != 0)

y = starty;
if (width == 0)

width = 80;

length = (int) strlen(string);
temp = (float) (width - length) / 2;
x = startx + (int) temp;
wattron(win, color);
mvwprintw(win, y, x, "%s", string);
wattroff(win, color);
refresh();

}

This program is self-explanatory. In this example the number of choices has been increased to ten, which
is larger than our sub window size which can hold 6 items. This message has to be explicitly conveyed to
the menu system with the function set_menu_format(). In here we specify the number of rows and
columns we want to be displayed for a single page. We can specify any number of items to be shown, in
the rows variables, if it is less than the height of the sub window. If the key pressed by the user is a PAGE

65

NCURSES Programming HOWTO

UP or PAGE DOWN, the menu is scrolled a page due to the requests (REQ_SCR_DPAGE and
REQ_SCR_UPAGE) given to menu_driver().

17.6. Multi Columnar Menus

In the above example you have seen how to use the function set_menu_format(). I didn’t mention what
the cols variable (third parameter) does. Well, If your sub window is wide enough, you can opt to display
more than one item per row. This can be specified in the cols variable. To make things simpler, the
following example doesn’t show descriptions for the items.

Example 21. Milt Columnar Menus Example

#include <stdlib.h>
#include <curses.h>
#include <menu.h>

#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define CTRLD 4

const char *choices[] =
{

"Choice 1", "Choice 2", "Choice 3", "Choice 4", "Choice 5",
"Choice 6", "Choice 7", "Choice 8", "Choice 9", "Choice 10",
"Choice 11", "Choice 12", "Choice 13", "Choice 14", "Choice 15",
"Choice 16", "Choice 17", "Choice 18", "Choice 19", "Choice 20",
"Exit",
(char *) NULL,

};

int
main(void)
{

ITEM **my_items;
int c;
MENU *my_menu;
WINDOW *my_menu_win;
int n_choices, i;

/* Initialize curses */
initscr();
start_color();
cbreak();
noecho();
keypad(stdscr, TRUE);
init_pair(1, COLOR_RED, COLOR_BLACK);
init_pair(2, COLOR_CYAN, COLOR_BLACK);

/* Create items */
n_choices = ARRAY_SIZE(choices);
my_items = (ITEM **) calloc((size_t) n_choices, sizeof(ITEM *));

66

NCURSES Programming HOWTO

for (i = 0; i < n_choices; ++i)
my_items[i] = new_item(choices[i], choices[i]);

/* Create menu */
my_menu = new_menu((ITEM **) my_items);

/* Set menu option not to show the description */
menu_opts_off(my_menu, O_SHOWDESC);

/* Create the window to be associated with the menu */
my_menu_win = newwin(10, 70, 4, 4);
keypad(my_menu_win, TRUE);

/* Set main window and sub window */
set_menu_win(my_menu, my_menu_win);
set_menu_sub(my_menu, derwin(my_menu_win, 6, 68, 3, 1));
set_menu_format(my_menu, 5, 3);
set_menu_mark(my_menu, " * ");

/* Print a border around the main window and print a title */
box(my_menu_win, 0, 0);

attron(COLOR_PAIR(2));
mvprintw(LINES - 3, 0, "Use PageUp and PageDown to scroll");
mvprintw(LINES - 2, 0, "Use Arrow Keys to navigate (F1 to Exit)");
attroff(COLOR_PAIR(2));
refresh();

/* Post the menu */
post_menu(my_menu);
wrefresh(my_menu_win);

while ((c = wgetch(my_menu_win)) != KEY_F(1)) {
switch (c) {
case KEY_DOWN:

menu_driver(my_menu, REQ_DOWN_ITEM);
break;

case KEY_UP:
menu_driver(my_menu, REQ_UP_ITEM);
break;

case KEY_LEFT:
menu_driver(my_menu, REQ_LEFT_ITEM);
break;

case KEY_RIGHT:
menu_driver(my_menu, REQ_RIGHT_ITEM);
break;

case KEY_NPAGE:
menu_driver(my_menu, REQ_SCR_DPAGE);
break;

case KEY_PPAGE:
menu_driver(my_menu, REQ_SCR_UPAGE);
break;

}

67

NCURSES Programming HOWTO

wrefresh(my_menu_win);
}

/* Unpost and free all the memory taken up */
unpost_menu(my_menu);
free_menu(my_menu);
for (i = 0; i < n_choices; ++i)

free_item(my_items[i]);
endwin();

}

Watch the function call to set_menu_format(). It specifies the number of columns to be 3, thus displaying
3 items per row. We have also switched off the showing descriptions with the function menu_opts_off().
There are couple of functions set_menu_opts(), menu_opts_on() and menu_opts() which can be used to
manipulate menu options. The following menu options can be specified.

O_ONEVALUE
Only one item can be selected for this menu.

O_SHOWDESC
Display the item descriptions when the menu is
posted.

O_ROWMAJOR
Display the menu in row-major order.

O_IGNORECASE
Ignore the case when pattern-matching.

O_SHOWMATCH
Move the cursor to within the item name while pat
tern-matching.

O_NONCYCLIC
Don’t wrap around next-item and previous-item,
requests to the other end of the menu.

All options are on by default. You can switch specific attributes on or off with menu_opts_on() and
menu_opts_off() functions. You can also use set_menu_opts() to directly specify the options. The
argument to this function should be a OR ed value of some of those above constants. The function
menu_opts() can be used to find out a menu’s present options.

17.7. Multi Valued Menus

You might be wondering what if you switch off the option O_ONEVALUE. Then the menu becomes
multi-valued. That means you can select more than one item. This brings us to the request
REQ_TOGGLE_ITEM. Let’s see it in action.

68

NCURSES Programming HOWTO

Example 22. Multi Valued Menus example

#include <stdlib.h>
#include <string.h>
#include <curses.h>
#include <menu.h>

#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define CTRLD 4

const char *choices[] =
{

"Choice 1",
"Choice 2",
"Choice 3",
"Choice 4",
"Choice 5",
"Choice 6",
"Choice 7",
"Exit",

};

int
main(void)
{

ITEM **my_items;
int c;
MENU *my_menu;
int n_choices, i;

/* Initialize curses */
initscr();
cbreak();
noecho();
keypad(stdscr, TRUE);

/* Initialize items */
n_choices = ARRAY_SIZE(choices);
my_items = (ITEM **) calloc((size_t) (n_choices + 1), sizeof(ITEM *));
for (i = 0; i < n_choices; ++i)

my_items[i] = new_item(choices[i], choices[i]);
my_items[n_choices] = (ITEM *) NULL;

my_menu = new_menu((ITEM **) my_items);

/* Make the menu multi valued */
menu_opts_off(my_menu, O_ONEVALUE);

mvprintw(LINES - 3, 0, "Use <SPACE> to select or unselect an item.");
mvprintw(LINES - 2, 0,

"<ENTER> to see presently selected items(F1 to Exit)");
post_menu(my_menu);
refresh();

69

NCURSES Programming HOWTO

while ((c = getch()) != KEY_F(1)) {
switch (c) {
case KEY_DOWN:

menu_driver(my_menu, REQ_DOWN_ITEM);
break;

case KEY_UP:
menu_driver(my_menu, REQ_UP_ITEM);
break;

case ’ ’:
menu_driver(my_menu, REQ_TOGGLE_ITEM);
break;

case 10: /* Enter */
{

char temp[200];
ITEM **items;

items = menu_items(my_menu);
temp[0] = ’\0’;
for (i = 0; i < item_count(my_menu); ++i)

if (item_value(items[i]) == TRUE) {
strcat(temp, item_name(items[i]));
strcat(temp, " ");

}
move(20, 0);
clrtoeol();
mvaddstr(20, 0, temp);
refresh();

}
break;

}
}

free_item(my_items[0]);
free_item(my_items[1]);
free_menu(my_menu);
endwin();

}

Whew, A lot of new functions. Let’s take them one after another. Firstly, the REQ_TOGGLE_ITEM. In a
multi-valued menu, the user should be allowed to select or un select more than one item. The request
REQ_TOGGLE_ITEM toggles the present selection. In this case when space is pressed
REQ_TOGGLE_ITEM request is sent to menu_driver to achieve the result.

Now when the user presses <ENTER> we show the items he presently selected. First we find out the
items associated with the menu using the function menu_items(). Then we loop through the items to find
out if the item is selected or not. The function item_value() returns TRUE if an item is selected. The
function item_count() returns the number of items in the menu. The item name can be found with
item_name(). You can also find the description associated with an item using item_description().

70

NCURSES Programming HOWTO

17.8. Menu Options

Well, by this time you must be itching for some difference in your menu, with lots of functionality. I
know. You want Colors !!!. You want to create nice menus similar to those text mode dos games
(http://www.jersey.net/~debinjoe/games/). The functions set_menu_fore() and set_menu_back() can be
used to change the attribute of the selected item and unselected item. The names are misleading. They
don’t change menu’s foreground or background which would have been useless.

The function set_menu_grey() can be used to set the display attribute for the non-selectable items in the
menu. This brings us to the interesting option for an item the one and only O_SELECTABLE. We can
turn it off by the function item_opts_off() and after that that item is not selectable. It is like a grayed item
in those fancy windows menus. Let’s put these concepts in practice with this example

Example 23. Menu Options example

#include <stdlib.h>
#include <menu.h>

#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define CTRLD 4

const char *choices[] =
{

"Choice 1",
"Choice 2",
"Choice 3",
"Choice 4",
"Choice 5",
"Choice 6",
"Choice 7",
"Exit",

};

int
main(void)
{

ITEM **my_items;
int c;
MENU *my_menu;
int n_choices, i;

/* Initialize curses */
initscr();
start_color();
cbreak();
noecho();
keypad(stdscr, TRUE);
init_pair(1, COLOR_RED, COLOR_BLACK);
init_pair(2, COLOR_GREEN, COLOR_BLACK);
init_pair(3, COLOR_MAGENTA, COLOR_BLACK);

71

NCURSES Programming HOWTO

/* Initialize items */
n_choices = ARRAY_SIZE(choices);
my_items = (ITEM **) calloc((size_t) (n_choices + 1), sizeof(ITEM *));
for (i = 0; i < n_choices; ++i)

my_items[i] = new_item(choices[i], choices[i]);
my_items[n_choices] = (ITEM *) NULL;
item_opts_off(my_items[3], O_SELECTABLE);
item_opts_off(my_items[6], O_SELECTABLE);

/* Create menu */
my_menu = new_menu((ITEM **) my_items);

/* Set fore ground and back ground of the menu */
set_menu_fore(my_menu, COLOR_PAIR(1) | A_REVERSE);
set_menu_back(my_menu, COLOR_PAIR(2));
set_menu_grey(my_menu, COLOR_PAIR(3));

/* Post the menu */
mvprintw(LINES - 3, 0, "Press <ENTER> to see the option selected");
mvprintw(LINES - 2, 0, "Up and Down arrow keys to navigate (F1 to Exit)");
post_menu(my_menu);
refresh();

while ((c = getch()) != KEY_F(1)) {
switch (c) {
case KEY_DOWN:

menu_driver(my_menu, REQ_DOWN_ITEM);
break;

case KEY_UP:
menu_driver(my_menu, REQ_UP_ITEM);
break;

case 10: /* Enter */
move(20, 0);
clrtoeol();
mvprintw(20, 0, "Item selected is : %s",

item_name(current_item(my_menu)));
pos_menu_cursor(my_menu);
break;

}
}
unpost_menu(my_menu);
for (i = 0; i < n_choices; ++i)

free_item(my_items[i]);
free_menu(my_menu);
endwin();

}

72

NCURSES Programming HOWTO

17.9. The useful User Pointer

We can associate a user pointer with each item in the menu. It works the same way as user pointer in
panels. It is not touched by menu system. You can store any thing you like in that. I usually use it to store
the function to be executed when the menu option is chosen (It is selected and may be the user pressed
<ENTER>);

Example 24. Menu User Pointer Usage

#include <stdlib.h>
#include <curses.h>
#include <menu.h>

#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define CTRLD 4

const char *choices[] =
{

"Choice 1",
"Choice 2",
"Choice 3",
"Choice 4",
"Choice 5",
"Choice 6",
"Choice 7",
"Exit",

};

typedef union {
void (*my_func) (const char *);
void *data;

} MY_DATA;

void func(const char *name);

int
main(void)
{

ITEM **my_items;
int c;
MENU *my_menu;
int n_choices, i;

/* Initialize curses */
initscr();
start_color();
cbreak();
noecho();
keypad(stdscr, TRUE);
init_pair(1, COLOR_RED, COLOR_BLACK);
init_pair(2, COLOR_GREEN, COLOR_BLACK);
init_pair(3, COLOR_MAGENTA, COLOR_BLACK);

73

NCURSES Programming HOWTO

/* Initialize items */
n_choices = ARRAY_SIZE(choices);
my_items = (ITEM **) calloc((size_t) (n_choices + 1), sizeof(ITEM *));
for (i = 0; i < n_choices; ++i) {

MY_DATA data = { func };
my_items[i] = new_item(choices[i], choices[i]);
/* Set the user pointer */
set_item_userptr(my_items[i], (void *) &data);

}
my_items[n_choices] = (ITEM *) NULL;

/* Create menu */
my_menu = new_menu((ITEM **) my_items);

/* Post the menu */
mvprintw(LINES - 3, 0, "Press <ENTER> to see the option selected");
mvprintw(LINES - 2, 0, "Up and Down arrow keys to navigate (F1 to Exit)");
post_menu(my_menu);
refresh();

while ((c = getch()) != KEY_F(1)) {
switch (c) {
case KEY_DOWN:

menu_driver(my_menu, REQ_DOWN_ITEM);
break;

case KEY_UP:
menu_driver(my_menu, REQ_UP_ITEM);
break;

case 10: /* Enter */
{

ITEM *cur;
const MY_DATA *data;

cur = current_item(my_menu);
data = item_userptr(cur);
data->my_func(item_name(cur));
pos_menu_cursor(my_menu);
break;

}
break;

}
}
unpost_menu(my_menu);
for (i = 0; i < n_choices; ++i)

free_item(my_items[i]);
free_menu(my_menu);
endwin();

}

void
func(const char *name)
{

74

NCURSES Programming HOWTO

move(20, 0);
clrtoeol();
mvprintw(20, 0, "Item selected is : %s", name);

}

18. Forms Library

Well. If you have seen those forms on web pages which take input from users and do various kinds of
things, you might be wondering how would any one create such forms in text mode display. It is quite
difficult to write those nifty forms in plain ncurses. Forms library tries to provide a basic frame work to
build and maintain forms with ease. It has lot of features(functions) which manage validation, dynamic
expansion of fields, etc. Let’s see it in full flow.

A form is a collection of fields; each field can be either a label(static text) or a data-entry location. The
forms also library provides functions to divide forms into multiple pages.

18.1. The Basics

Forms are created in much the same way as menus. First the fields related to the form are created with
new_field(). You can set options for the fields, so that they can be displayed with some fancy attributes,
validated before the field looses focus, etc. Then the fields are attached to form. After this, the form can
be posted to display and is ready to receive inputs. On the similar lines to menu_driver(), the form is
manipulated with form_driver(). We can send requests to form_driver to move focus to a certain field,
move cursor to end of the field etc. After the user enters values in the fields and validation done, form can
be unposted and memory allocated can be freed.

The general flow of control of a forms program looks like this.

1. Initialize curses

2. Create fields using new_field(). You can specify the height and width of the field, and its position on
the form.

3. Create the forms with new_form() by specifying the fields to be attached with.

4. Post the form with form_post() and refresh the screen.

5. Process the user requests with a loop and do necessary updates to form with form_driver.

6. Unpost the menu with form_unpost()

7. Free the memory allocated to menu by free_form()

8. Free the memory allocated to the items with free_field()

9. End curses

75

NCURSES Programming HOWTO

As you can see, working with forms library is much similar to handling menu library. The following
examples will explore various aspects of form processing. Let’s start the journey with a simple example.
first.

18.2. Compiling With the Forms Library

To use forms library functions, you have to include form.h and to link the program with forms library the
flag -lform should be added along with -lncurses in that order.

#include <form.h>
.
.
.

compile and link: gcc <program file> -lform -lncurses

Example 25. Forms Basics

#include <form.h>

int
main(void)
{

FIELD *field[3];
FORM *my_form;
int ch;

/* Initialize curses */
initscr();
cbreak();
noecho();
keypad(stdscr, TRUE);

/* Initialize the fields */
field[0] = new_field(1, 10, 4, 18, 0, 0);
field[1] = new_field(1, 10, 6, 18, 0, 0);
field[2] = NULL;

/* Set field options */
set_field_back(field[0], A_UNDERLINE); /* Print a line for the option */
field_opts_off(field[0], O_AUTOSKIP); /* Don’t go to next field when this */

/* Field is filled up */
set_field_back(field[1], A_UNDERLINE);
field_opts_off(field[1], O_AUTOSKIP);

/* Create the form and post it */
my_form = new_form(field);
post_form(my_form);
refresh();

76

NCURSES Programming HOWTO

mvprintw(4, 10, "Value 1:");
mvprintw(6, 10, "Value 2:");
refresh();

/* Loop through to get user requests */
while ((ch = getch()) != KEY_F(1)) {

switch (ch) {
case KEY_DOWN:

/* Go to next field */
form_driver(my_form, REQ_NEXT_FIELD);
/* Go to the end of the present buffer */
/* Leaves nicely at the last character */
form_driver(my_form, REQ_END_LINE);
break;

case KEY_UP:
/* Go to previous field */
form_driver(my_form, REQ_PREV_FIELD);
form_driver(my_form, REQ_END_LINE);
break;

default:
/* If this is a normal character, it gets */
/* Printed */
form_driver(my_form, ch);
break;

}
}

/* Un post form and free the memory */
unpost_form(my_form);
free_form(my_form);
free_field(field[0]);
free_field(field[1]);

endwin();
return 0;

}

Above example is pretty straight forward. It creates two fields with new_field(). new_field() takes
height, width, starty, startx, number of offscreen rows and number of additional working buffers. The
fifth argument number of offscreen rows specifies how much of the field to be shown. If it is zero, the
entire field is always displayed otherwise the form will be scrollable when the user accesses not
displayed parts of the field. The forms library allocates one buffer per field to store the data user enters.
Using the last parameter to new_field() we can specify it to allocate some additional buffers. These can
be used for any purpose you like.

After creating the fields, back ground attribute of both of them is set to an underscore with
set_field_back(). The AUTOSKIP option is turned off using field_opts_off(). If this option is turned on,
focus will move to the next field in the form once the active field is filled up completely.

77

NCURSES Programming HOWTO

After attaching the fields to the form, it is posted. Here on, user inputs are processed in the while loop, by
making corresponding requests to form_driver. The details of all the requests to the form_driver() are
explained later.

18.3. Playing with Fields

Each form field is associated with a lot of attributes. They can be manipulated to get the required effect
and to have fun !!!. So why wait?

18.3.1. Fetching Size and Location of Field

The parameters we have given at the time of creation of a field can be retrieved with field_info(). It
returns height, width, starty, startx, number of offscreen rows, and number of additional buffers into the
parameters given to it. It is a sort of inverse of new_field().

int field_info(FIELD *field, /* field from which to fetch */
int *height, *int width, /* field size */
int *top, int *left, /* upper left corner */
int *offscreen, /* number of offscreen rows */
int *nbuf); /* number of working buffers */

18.3.2. Moving the field

The location of the field can be moved to a different position with move_field().

int move_field(FIELD *field, /* field to alter */
int top, int left); /* new upper-left corner */

As usual, the changed position can be queried with field_infor().

18.3.3. Field Justification

The justification to be done for the field can be fixed using the function set_field_just().

int set_field_just(FIELD *field, /* field to alter */
int justmode); /* mode to set */

int field_just(FIELD *field); /* fetch justify mode of field */

The justification mode valued accepted and returned by these functions are NO_JUSTIFICATION,
JUSTIFY_RIGHT, JUSTIFY_LEFT, or JUSTIFY_CENTER.

78

NCURSES Programming HOWTO

18.3.4. Field Display Attributes

As you have seen, in the above example, display attribute for the fields can be set with set_field_fore()
and setfield_back(). These functions set foreground and background attribute of the fields. You can also
specify a pad character which will be filled in the unfilled portion of the field. The pad character is set
with a call to set_field_pad(). Default pad value is a space. The functions field_fore(), field_back,
field_pad() can be used to query the present foreground, background attributes and pad character for the
field. The following list gives the usage of functions.

int set_field_fore(FIELD *field, /* field to alter */
chtype attr); /* attribute to set */

chtype field_fore(FIELD *field); /* field to query */
/* returns foreground attribute */

int set_field_back(FIELD *field, /* field to alter */
chtype attr); /* attribute to set */

chtype field_back(FIELD *field); /* field to query */
/* returns background attribute */

int set_field_pad(FIELD *field, /* field to alter */
int pad); /* pad character to set */

chtype field_pad(FIELD *field); /* field to query */
/* returns present pad character */

Though above functions seem quite simple, using colors with set_field_fore() may be frustrating in the
beginning. Let me first explain about foreground and background attributes of a field. The foreground
attribute is associated with the character. That means a character in the field is printed with the attribute
you have set with set_field_fore(). Background attribute is the attribute used to fill background of field,
whether any character is there or not. So what about colors? Since colors are always defined in pairs,
what is the right way to display colored fields? Here’s an example clarifying color attributes.

Example 26. Form Attributes example

#include <form.h>

int
main(void)
{

FIELD *field[3];
FORM *my_form;
int ch;

/* Initialize curses */
initscr();
start_color();
cbreak();
noecho();

79

NCURSES Programming HOWTO

keypad(stdscr, TRUE);

/* Initialize few color pairs */
init_pair(1, COLOR_WHITE, COLOR_BLUE);
init_pair(2, COLOR_WHITE, COLOR_BLUE);

/* Initialize the fields */
field[0] = new_field(1, 10, 4, 18, 0, 0);
field[1] = new_field(1, 10, 6, 18, 0, 0);
field[2] = NULL;

/* Set field options */
set_field_fore(field[0], COLOR_PAIR(1)); /* Put the field with blue background */
set_field_back(field[0], COLOR_PAIR(2)); /* and white foreground (characters */

/* are printed in white */
field_opts_off(field[0], O_AUTOSKIP); /* Don’t go to next field when this */

/* Field is filled up */
set_field_back(field[1], A_UNDERLINE);
field_opts_off(field[1], O_AUTOSKIP);

/* Create the form and post it */
my_form = new_form(field);
post_form(my_form);
refresh();

set_current_field(my_form, field[0]); /* Set focus to the colored field */
mvprintw(4, 10, "Value 1:");
mvprintw(6, 10, "Value 2:");
mvprintw(LINES - 2, 0,

"Use UP, DOWN arrow keys to switch between fields");
refresh();

/* Loop through to get user requests */
while ((ch = getch()) != KEY_F(1)) {

switch (ch) {
case KEY_DOWN:

/* Go to next field */
form_driver(my_form, REQ_NEXT_FIELD);
/* Go to the end of the present buffer */
/* Leaves nicely at the last character */
form_driver(my_form, REQ_END_LINE);
break;

case KEY_UP:
/* Go to previous field */
form_driver(my_form, REQ_PREV_FIELD);
form_driver(my_form, REQ_END_LINE);
break;

default:
/* If this is a normal character, it gets */
/* Printed */
form_driver(my_form, ch);
break;

}

80

NCURSES Programming HOWTO

}

/* Un post form and free the memory */
unpost_form(my_form);
free_form(my_form);
free_field(field[0]);
free_field(field[1]);

endwin();
return 0;

}

Play with the color pairs and try to understand the foreground and background attributes. In my programs
using color attributes, I usually set only the background with set_field_back(). Curses simply doesn’t
allow defining individual color attributes.

18.3.5. Field Option Bits

There is also a large collection of field option bits you can set to control various aspects of forms
processing. You can manipulate them with these functions:

int set_field_opts(FIELD *field, /* field to alter */
int attr); /* attribute to set */

int field_opts_on(FIELD *field, /* field to alter */
int attr); /* attributes to turn on */

int field_opts_off(FIELD *field, /* field to alter */
int attr); /* attributes to turn off */

int field_opts(FIELD *field); /* field to query */

The function set_field_opts() can be used to directly set attributes of a field or you can choose to switch a
few attributes on and off with field_opts_on() and field_opts_off() selectively. Anytime you can query the
attributes of a field with field_opts(). The following is the list of available options. By default, all options
are on.

O_VISIBLE

Controls whether the field is visible on the screen. Can be used during form processing to hide or
pop up fields depending on the value of parent fields.

O_ACTIVE

Controls whether the field is active during forms processing (i.e. visited by form navigation keys).
Can be used to make labels or derived fields with buffer values alterable by the forms application,
not the user.

81

NCURSES Programming HOWTO

O_PUBLIC

Controls whether data is displayed during field entry. If this option is turned off on a field, the
library will accept and edit data in that field, but it will not be displayed and the visible field cursor
will not move. You can turn off the O_PUBLIC bit to define password fields.

O_EDIT

Controls whether the field’s data can be modified. When this option is off, all editing requests
except REQ_PREV_CHOICE and REQ_NEXT_CHOICEwill fail. Such read-only fields may be useful
for help messages.

O_WRAP

Controls word-wrapping in multi-line fields. Normally, when any character of a (blank-separated)
word reaches the end of the current line, the entire word is wrapped to the next line (assuming there
is one). When this option is off, the word will be split across the line break.

O_BLANK

Controls field blanking. When this option is on, entering a character at the first field position erases
the entire field (except for the just-entered character).

O_AUTOSKIP

Controls automatic skip to next field when this one fills. Normally, when the forms user tries to type
more data into a field than will fit, the editing location jumps to next field. When this option is off,
the user’s cursor will hang at the end of the field. This option is ignored in dynamic fields that have
not reached their size limit.

O_NULLOK

Controls whether validation is applied to blank fields. Normally, it is not; the user can leave a field
blank without invoking the usual validation check on exit. If this option is off on a field, exit from it
will invoke a validation check.

O_PASSOK

Controls whether validation occurs on every exit, or only after the field is modified. Normally the
latter is true. Setting O_PASSOK may be useful if your field’s validation function may change
during forms processing.

O_STATIC

Controls whether the field is fixed to its initial dimensions. If you turn this off, the field becomes
dynamic and will stretch to fit entered data.

A field’s options cannot be changed while the field is currently selected. However, options may be
changed on posted fields that are not current.

The option values are bit-masks and can be composed with logical-or in the obvious way. You have seen
the usage of switching off O_AUTOSKIP option. The following example clarifies usage of some more
options. Other options are explained where appropriate.

82

NCURSES Programming HOWTO

Example 27. Field Options Usage example

#include <form.h>

#define STARTX 15
#define STARTY 4
#define WIDTH 25

#define N_FIELDS 3

int
main(void)
{

FIELD *field[N_FIELDS];
FORM *my_form;
int ch, i;

/* Initialize curses */
initscr();
cbreak();
noecho();
keypad(stdscr, TRUE);

/* Initialize the fields */
for (i = 0; i < N_FIELDS - 1; ++i)

field[i] = new_field(1, WIDTH, STARTY + i * 2, STARTX, 0, 0);
field[N_FIELDS - 1] = NULL;

/* Set field options */
set_field_back(field[1], A_UNDERLINE); /* Print a line for the option */

field_opts_off(field[0], O_ACTIVE); /* This field is a static label */
field_opts_off(field[1], O_PUBLIC); /* This filed is like a password field */
field_opts_off(field[1], O_AUTOSKIP); /* To avoid entering the same field */

/* after last character is entered */

/* Create the form and post it */
my_form = new_form(field);
post_form(my_form);
refresh();

set_field_just(field[0], JUSTIFY_CENTER); /* Center Justification */
set_field_buffer(field[0], 0, "This is a static Field");
/* Initialize the field */
mvprintw(STARTY, STARTX - 10, "Field 1:");
mvprintw(STARTY + 2, STARTX - 10, "Field 2:");
refresh();

/* Loop through to get user requests */
while ((ch = getch()) != KEY_F(1)) {

switch (ch) {
case KEY_DOWN:

/* Go to next field */

83

NCURSES Programming HOWTO

form_driver(my_form, REQ_NEXT_FIELD);
/* Go to the end of the present buffer */
/* Leaves nicely at the last character */
form_driver(my_form, REQ_END_LINE);
break;

case KEY_UP:
/* Go to previous field */
form_driver(my_form, REQ_PREV_FIELD);
form_driver(my_form, REQ_END_LINE);
break;

default:
/* If this is a normal character, it gets */
/* Printed */
form_driver(my_form, ch);
break;

}
}

/* Un post form and free the memory */
unpost_form(my_form);
free_form(my_form);
free_field(field[0]);
free_field(field[1]);

endwin();
return 0;

}

This example, though useless, shows the usage of options. If used properly, they can present information
very effectively in a form. The second field being not O_PUBLIC, does not show the characters you are
typing.

18.3.6. Field Status

The field status specifies whether the field has got edited or not. It is initially set to FALSE and when user
enters something and the data buffer gets modified it becomes TRUE. So a field’s status can be queried to
find out whether it has been modified or not. The following functions can assist in those operations.

int set_field_status(FIELD *field, /* field to alter */
int status); /* status to set */

int field_status(FIELD *field); /* fetch status of field */

It is better to check the field’s status only after after leaving the field, as data buffer might not have been
updated yet as the validation is still due. To guarantee that right status is returned, call field_status()
either (1) in the field’s exit validation check routine, (2) from the field’s or form’s initialization or
termination hooks, or (3) just after a REQ_VALIDATION request has been processed by the forms driver

84

NCURSES Programming HOWTO

18.3.7. Field User Pointer

Every field structure contains one pointer that can be used by the user for various purposes. It is not
touched by forms library and can be used for any purpose by the user. The following functions set and
fetch user pointer.

int set_field_userptr(FIELD *field,
char *userptr); /* the user pointer you wish to associate */

/* with the field */

char *field_userptr(FIELD *field); /* fetch user pointer of the field */

18.3.8. Variable-Sized Fields

If you want a dynamically changing field with variable width, this is the feature you want to put to full
use. This will allow the user to enter more data than the original size of the field and let the field grow.
According to the field orientation it will scroll horizontally or vertically to incorporate the new data.

To make a field dynamically growable, the option O_STATIC should be turned off. This can be done
with a

field_opts_off(field_pointer, O_STATIC);

But it is usually not advisable to allow a field to grow infinitely. You can set a maximum limit to the
growth of the field with

int set_max_field(FIELD *field, /* Field on which to operate */
int max_growth); /* maximum growth allowed for the field */

The field info for a dynamically growable field can be retrieved by

int dynamic_field_info(FIELD *field, /* Field on which to operate */
int *prows, /* number of rows will be filled in this */
int *pcols, /* number of columns will be filled in this*/
int *pmax) /* maximum allowable growth will be filled */

/* in this */

Though field_info work as usual, it is advisable to use this function to get the proper attributes of a
dynamically growable field.

Recall the library routine new_field; a new field created with height set to one will be defined to be a one
line field. A new field created with height greater than one will be defined to be a multi line field.

85

NCURSES Programming HOWTO

A one line field with O_STATIC turned off (dynamically growable field) will contain a single fixed row,
but the number of columns can increase if the user enters more data than the initial field will hold. The
number of columns displayed will remain fixed and the additional data will scroll horizontally.

A multi line field with O_STATIC turned off (dynamically growable field) will contain a fixed number of
columns, but the number of rows can increase if the user enters more data than the initial field will hold.
The number of rows displayed will remain fixed and the additional data will scroll vertically.

The above two paragraphs pretty much describe a dynamically growable field’s behavior. The way other
parts of forms library behaves is described below:

1. The field option O_AUTOSKIP will be ignored if the option O_STATIC is off and there is no
maximum growth specified for the field. Currently, O_AUTOSKIP generates an automatic
REQ_NEXT_FIELD form driver request when the user types in the last character position of a field.
On a growable field with no maximum growth specified, there is no last character position. If a
maximum growth is specified, the O_AUTOSKIP option will work as normal if the field has grown
to its maximum size.

2. The field justification will be ignored if the option O_STATIC is off. Currently, set_field_just can be
used to JUSTIFY_LEFT, JUSTIFY_RIGHT, JUSTIFY_CENTER the contents of a one line field. A
growable one line field will, by definition, grow and scroll horizontally and may contain more data
than can be justified. The return from field_just will be unchanged.

3. The overloaded form driver request REQ_NEW_LINE will operate the same way regardless of the
O_NL_OVERLOAD form option if the field option O_STATIC is off and there is no maximum
growth specified for the field. Currently, if the form option O_NL_OVERLOAD is on,
REQ_NEW_LINE implicitly generates a REQ_NEXT_FIELD if called from the last line of a field.
If a field can grow without bound, there is no last line, so REQ_NEW_LINE will never implicitly
generate a REQ_NEXT_FIELD. If a maximum growth limit is specified and the
O_NL_OVERLOAD form option is on, REQ_NEW_LINE will only implicitly generate
REQ_NEXT_FIELD if the field has grown to its maximum size and the user is on the last line.

4. The library call dup_field will work as usual; it will duplicate the field, including the current buffer
size and contents of the field being duplicated. Any specified maximum growth will also be
duplicated.

5. The library call link_field will work as usual; it will duplicate all field attributes and share buffers
with the field being linked. If the O_STATIC field option is subsequently changed by a field sharing
buffers, how the system reacts to an attempt to enter more data into the field than the buffer will
currently hold will depend on the setting of the option in the current field.

6. The library call field_info will work as usual; the variable nrow will contain the value of the original
call to new_field. The user should use dynamic_field_info, described above, to query the current size
of the buffer.

Some of the above points make sense only after explaining form driver. We will be looking into that in
next few sections.

86

NCURSES Programming HOWTO

18.4. Form Windows

The form windows concept is pretty much similar to menu windows. Every form is associated with a
main window and a sub window. The form main window displays any title or border associated or
whatever the user wishes. Then the sub window contains all the fields and displays them according to
their position. This gives the flexibility of manipulating fancy form displaying very easily.

Since this is pretty much similar to menu windows, I am providing an example with out much
explanation. The functions are similar and they work the same way.

Example 28. Form Windows Example

#include <string.h>
#include <form.h>

void print_in_middle(WINDOW *win, int starty, int startx,
int width, const char *string, chtype color);

int
main(void)
{

FIELD *field[3];
FORM *my_form;
WINDOW *my_form_win;
int ch, rows, cols;

/* Initialize curses */
initscr();
start_color();
cbreak();
noecho();
keypad(stdscr, TRUE);

/* Initialize few color pairs */
init_pair(1, COLOR_RED, COLOR_BLACK);

/* Initialize the fields */
field[0] = new_field(1, 10, 6, 1, 0, 0);
field[1] = new_field(1, 10, 8, 1, 0, 0);
field[2] = NULL;

/* Set field options */
set_field_back(field[0], A_UNDERLINE);
field_opts_off(field[0], O_AUTOSKIP);
/* Don’t go to next field when this */
/* Field is filled up */
set_field_back(field[1], A_UNDERLINE);
field_opts_off(field[1], O_AUTOSKIP);

/* Create the form and post it */
my_form = new_form(field);

87

NCURSES Programming HOWTO

/* Calculate the area required for the form */
scale_form(my_form, &rows, &cols);

/* Create the window to be associated with the form */
my_form_win = newwin(rows + 4, cols + 4, 4, 4);
keypad(my_form_win, TRUE);

/* Set main window and sub window */
set_form_win(my_form, my_form_win);
set_form_sub(my_form, derwin(my_form_win, rows, cols, 2, 2));

/* Print a border around the main window and print a title */
box(my_form_win, 0, 0);
print_in_middle(my_form_win, 1, 0, cols + 4, "My Form", COLOR_PAIR(1));

post_form(my_form);
wrefresh(my_form_win);

mvprintw(LINES - 2, 0,
"Use UP, DOWN arrow keys to switch between fields");

refresh();

/* Loop through to get user requests */
while ((ch = wgetch(my_form_win)) != KEY_F(1)) {

switch (ch) {
case KEY_DOWN:

/* Go to next field */
form_driver(my_form, REQ_NEXT_FIELD);
/* Go to the end of the present buffer */
/* Leaves nicely at the last character */
form_driver(my_form, REQ_END_LINE);
break;

case KEY_UP:
/* Go to previous field */
form_driver(my_form, REQ_PREV_FIELD);
form_driver(my_form, REQ_END_LINE);
break;

default:
/* If this is a normal character, it gets */
/* Printed */
form_driver(my_form, ch);
break;

}
}

/* Un post form and free the memory */
unpost_form(my_form);
free_form(my_form);
free_field(field[0]);
free_field(field[1]);

endwin();

88

NCURSES Programming HOWTO

return 0;
}

void
print_in_middle(WINDOW *win, int starty, int startx,

int width, const char *string, chtype color)
{

int length, x, y;
float temp;

if (win == NULL)
win = stdscr;

getyx(win, y, x);
if (startx != 0)

x = startx;
if (starty != 0)

y = starty;
if (width == 0)

width = 80;

length = (int) strlen(string);
temp = (float) (width - length) / 2;
x = startx + (int) temp;
wattron(win, color);
mvwprintw(win, y, x, "%s", string);
wattroff(win, color);
refresh();

}

18.5. Field Validation

By default, a field will accept any data input by the user. It is possible to attach validation to the field.
Then any attempt by the user to leave the field, while it contains data that doesn’t match the validation
type will fail. Some validation types also have a character-validity check for each time a character is
entered in the field.

Validation can be attached to a field with the following function.

int set_field_type(FIELD *field, /* field to alter */
FIELDTYPE *ftype, /* type to associate */
...); /* additional arguments*/

Once set, the validation type for a field can be queried with

FIELDTYPE *field_type(FIELD *field); /* field to query */

89

NCURSES Programming HOWTO

The form driver validates the data in a field only when data is entered by the end-user. Validation does
not occur when

• the application program changes the field value by calling set_field_buffer.

• linked field values are changed indirectly -- by changing the field to which they are linked

The following are the pre-defined validation types. You can also specify custom validation, though it is a
bit tricky and cumbersome.

TYPE_ALPHA

This field type accepts alphabetic data; no blanks, no digits, no special characters (this is checked at
character-entry time). It is set up with:

int set_field_type(FIELD *field, /* field to alter */
TYPE_ALPHA, /* type to associate */
int width); /* minimum width of field */

The width argument sets a minimum width of data. The user has to enter at-least width number of
characters before he can leave the field. Typically you’ll want to set this to the field width; if it is greater
than the field width, the validation check will always fail. A minimum width of zero makes field
completion optional.

TYPE_ALNUM

This field type accepts alphabetic data and digits; no blanks, no special characters (this is checked at
character-entry time). It is set up with:

int set_field_type(FIELD *field, /* field to alter */
TYPE_ALNUM, /* type to associate */
int width); /* minimum width of field */

The width argument sets a minimum width of data. As with TYPE_ALPHA, typically you’ll want to set
this to the field width; if it is greater than the field width, the validation check will always fail. A
minimum width of zero makes field completion optional.

TYPE_ENUM

This type allows you to restrict a field’s values to be among a specified set of string values (for example,
the two-letter postal codes for U.S. states). It is set up with:

int set_field_type(FIELD *field, /* field to alter */

90

NCURSES Programming HOWTO

TYPE_ENUM, /* type to associate */
char **valuelist; /* list of possible values */
int checkcase; /* case-sensitive? */
int checkunique); /* must specify uniquely? */

The valuelist parameter must point at a NULL-terminated list of valid strings. The checkcase argument,
if true, makes comparison with the string case-sensitive.

When the user exits a TYPE_ENUM field, the validation procedure tries to complete the data in the
buffer to a valid entry. If a complete choice string has been entered, it is of course valid. But it is also
possible to enter a prefix of a valid string and have it completed for you.

By default, if you enter such a prefix and it matches more than one value in the string list, the prefix will
be completed to the first matching value. But the checkunique argument, if true, requires prefix matches
to be unique in order to be valid.

The REQ_NEXT_CHOICE and REQ_PREV_CHOICE input requests can be particularly useful with
these fields.

TYPE_INTEGER

This field type accepts an integer. It is set up as follows:

int set_field_type(FIELD *field, /* field to alter */
TYPE_INTEGER, /* type to associate */
int padding, /* # places to zero-pad to */
int vmin, int vmax); /* valid range */

Valid characters consist of an optional leading minus and digits. The range check is performed on exit. If
the range maximum is less than or equal to the minimum, the range is ignored.

If the value passes its range check, it is padded with as many leading zero digits as necessary to meet the
padding argument.

A TYPE_INTEGER value buffer can conveniently be interpreted with the C library function atoi(3).

TYPE_NUMERIC

This field type accepts a decimal number. It is set up as follows:

int set_field_type(FIELD *field, /* field to alter */
TYPE_NUMERIC, /* type to associate */

91

NCURSES Programming HOWTO

int padding, /* # places of precision */
int vmin, int vmax); /* valid range */

Valid characters consist of an optional leading minus and digits. possibly including a decimal point. The
range check is performed on exit. If the range maximum is less than or equal to the minimum, the range
is ignored.

If the value passes its range check, it is padded with as many trailing zero digits as necessary to meet the
padding argument.

A TYPE_NUMERIC value buffer can conveniently be interpreted with the C library function atof(3).

TYPE_REGEXP

This field type accepts data matching a regular expression. It is set up as follows:

int set_field_type(FIELD *field, /* field to alter */
TYPE_REGEXP, /* type to associate */
char *regexp); /* expression to match */

The syntax for regular expressions is that of regcomp(3). The check for regular-expression match is
performed on exit.

18.6. Form Driver: The work horse of the forms system

As in the menu system, form_driver() plays a very important role in forms system. All types of requests
to forms system should be funneled through form_driver().

int form_driver(FORM *form, /* form on which to operate */
int request) /* form request code */

As you have seen some of the examples above, you have to be in a loop looking for user input and then
decide whether it is a field data or a form request. The form requests are then passed to form_driver() to
do the work.

The requests roughly can be divided into following categories. Different requests and their usage is
explained below:

92

NCURSES Programming HOWTO

18.6.1. Page Navigation Requests

These requests cause page-level moves through the form, triggering display of a new form screen. A
form can be made of multiple pages. If you have a big form with lot of fields and logical sections, then
you can divide the form into pages. The function set_new_page() to set a new page at the field specified.

int set_new_page(FIELD *field,/* Field at which page break to be set or unset */
bool new_page_flag); /* should be TRUE to put a break */

The following requests allow you to move to different pages

• REQ_NEXT_PAGE Move to the next form page.

• REQ_PREV_PAGE Move to the previous form page.

• REQ_FIRST_PAGE Move to the first form page.

• REQ_LAST_PAGE Move to the last form page.

These requests treat the list as cyclic; that is, REQ_NEXT_PAGE from the last page goes to the first, and
REQ_PREV_PAGE from the first page goes to the last.

18.6.2. Inter-Field Navigation Requests

These requests handle navigation between fields on the same page.

• REQ_NEXT_FIELD Move to next field.

• REQ_PREV_FIELD Move to previous field.

• REQ_FIRST_FIELD Move to the first field.

• REQ_LAST_FIELD Move to the last field.

• REQ_SNEXT_FIELD Move to sorted next field.

• REQ_SPREV_FIELD Move to sorted previous field.

• REQ_SFIRST_FIELD Move to the sorted first field.

• REQ_SLAST_FIELD Move to the sorted last field.

• REQ_LEFT_FIELD Move left to field.

• REQ_RIGHT_FIELD Move right to field.

• REQ_UP_FIELD Move up to field.

• REQ_DOWN_FIELD Move down to field.

These requests treat the list of fields on a page as cyclic; that is, REQ_NEXT_FIELD from the last field
goes to the first, and REQ_PREV_FIELD from the first field goes to the last. The order of the fields for
these (and the REQ_FIRST_FIELD and REQ_LAST_FIELD requests) is simply the order of the field
pointers in the form array (as set up by new_form() or set_form_fields()

93

NCURSES Programming HOWTO

It is also possible to traverse the fields as if they had been sorted in screen-position order, so the sequence
goes left-to-right and top-to-bottom. To do this, use the second group of four sorted-movement requests.

Finally, it is possible to move between fields using visual directions up, down, right, and left. To
accomplish this, use the third group of four requests. Note, however, that the position of a form for
purposes of these requests is its upper-left corner.

For example, suppose you have a multi-line field B, and two single-line fields A and C on the same line
with B, with A to the left of B and C to the right of B. A REQ_MOVE_RIGHT from A will go to B only
if A, B, and C all share the same first line; otherwise it will skip over B to C.

18.6.3. Intra-Field Navigation Requests

These requests drive movement of the edit cursor within the currently selected field.

• REQ_NEXT_CHAR Move to next character.

• REQ_PREV_CHAR Move to previous character.

• REQ_NEXT_LINE Move to next line.

• REQ_PREV_LINE Move to previous line.

• REQ_NEXT_WORD Move to next word.

• REQ_PREV_WORD Move to previous word.

• REQ_BEG_FIELD Move to beginning of field.

• REQ_END_FIELD Move to end of field.

• REQ_BEG_LINE Move to beginning of line.

• REQ_END_LINE Move to end of line.

• REQ_LEFT_CHAR Move left in field.

• REQ_RIGHT_CHAR Move right in field.

• REQ_UP_CHAR Move up in field.

• REQ_DOWN_CHAR Move down in field.

Each word is separated from the previous and next characters by whitespace. The commands to move to
beginning and end of line or field look for the first or last non-pad character in their ranges.

18.6.4. Scrolling Requests

Fields that are dynamic and have grown and fields explicitly created with offscreen rows are scrollable.
One-line fields scroll horizontally; multi-line fields scroll vertically. Most scrolling is triggered by
editing and intra-field movement (the library scrolls the field to keep the cursor visible). It is possible to
explicitly request scrolling with the following requests:

94

NCURSES Programming HOWTO

• REQ_SCR_FLINE Scroll vertically forward a line.

• REQ_SCR_BLINE Scroll vertically backward a line.

• REQ_SCR_FPAGE Scroll vertically forward a page.

• REQ_SCR_BPAGE Scroll vertically backward a page.

• REQ_SCR_FHPAGE Scroll vertically forward half a page.

• REQ_SCR_BHPAGE Scroll vertically backward half a page.

• REQ_SCR_FCHAR Scroll horizontally forward a character.

• REQ_SCR_BCHAR Scroll horizontally backward a character.

• REQ_SCR_HFLINE Scroll horizontally one field width forward.

• REQ_SCR_HBLINE Scroll horizontally one field width backward.

• REQ_SCR_HFHALF Scroll horizontally one half field width forward.

• REQ_SCR_HBHALF Scroll horizontally one half field width backward.

For scrolling purposes, a page of a field is the height of its visible part.

18.6.5. Editing Requests

When you pass the forms driver an ASCII character, it is treated as a request to add the character to the
field’s data buffer. Whether this is an insertion or a replacement depends on the field’s edit mode
(insertion is the default.

The following requests support editing the field and changing the edit mode:

• REQ_INS_MODE Set insertion mode.

• REQ_OVL_MODE Set overlay mode.

• REQ_NEW_LINE New line request (see below for explanation).

• REQ_INS_CHAR Insert space at character location.

• REQ_INS_LINE Insert blank line at character location.

• REQ_DEL_CHAR Delete character at cursor.

• REQ_DEL_PREV Delete previous word at cursor.

• REQ_DEL_LINE Delete line at cursor.

• REQ_DEL_WORD Delete word at cursor.

• REQ_CLR_EOL Clear to end of line.

• REQ_CLR_EOF Clear to end of field.

• REQ_CLR_FIELD Clear entire field.

95

NCURSES Programming HOWTO

The behavior of the REQ_NEW_LINE and REQ_DEL_PREV requests is complicated and partly
controlled by a pair of forms options. The special cases are triggered when the cursor is at the beginning
of a field, or on the last line of the field.

First, we consider REQ_NEW_LINE:

The normal behavior of REQ_NEW_LINE in insert mode is to break the current line at the position of
the edit cursor, inserting the portion of the current line after the cursor as a new line following the current
and moving the cursor to the beginning of that new line (you may think of this as inserting a newline in
the field buffer).

The normal behavior of REQ_NEW_LINE in overlay mode is to clear the current line from the position
of the edit cursor to end of line. The cursor is then moved to the beginning of the next line.

However, REQ_NEW_LINE at the beginning of a field, or on the last line of a field, instead does a
REQ_NEXT_FIELD. O_NL_OVERLOAD option is off, this special action is disabled.

Now, let us consider REQ_DEL_PREV:

The normal behavior of REQ_DEL_PREV is to delete the previous character. If insert mode is on, and
the cursor is at the start of a line, and the text on that line will fit on the previous one, it instead appends
the contents of the current line to the previous one and deletes the current line (you may think of this as
deleting a newline from the field buffer).

However, REQ_DEL_PREV at the beginning of a field is instead treated as a REQ_PREV_FIELD.

If the O_BS_OVERLOAD option is off, this special action is disabled and the forms driver just returns
E_REQUEST_DENIED.

18.6.6. Order Requests

If the type of your field is ordered, and has associated functions for getting the next and previous values
of the type from a given value, there are requests that can fetch that value into the field buffer:

• REQ_NEXT_CHOICE Place the successor value of the current value in the buffer.

• REQ_PREV_CHOICE Place the predecessor value of the current value in the buffer.

Of the built-in field types, only TYPE_ENUM has built-in successor and predecessor functions. When
you define a field type of your own (see Custom Validation Types), you can associate our own ordering
functions.

96

NCURSES Programming HOWTO

18.6.7. Application Commands

Form requests are represented as integers above the curses value greater than KEY_MAX and less than
or equal to the constant MAX_COMMAND. A value within this range gets ignored by form_driver(). So
this can be used for any purpose by the application. It can be treated as an application specific action and
take corresponding action.

19. Tools and Widget Libraries

Now that you have seen the capabilities of ncurses and its sister libraries, you are rolling your sleeves up
and gearing for a project that heavily manipulates screen. But wait.. It can be pretty difficult to write and
maintain complex GUI widgets in plain ncurses or even with the additional libraries. There are some
ready-to-use tools and widget libraries that can be used instead of writing your own widgets. You can use
some of them, get ideas from the code, or even extend them.

19.1. CDK (Curses Development Kit)

In the author’s words

CDK stands for ’Curses Development Kit’ and it currently contains 21 ready to use widgets which
facilitate the speedy development of full screen curses programs.

The kit provides some useful widgets, which can be used in your programs directly. It is pretty well
written and the documentation is very good. The examples in the examples directory can be a good place
to start for beginners. The CDK can be downloaded from https://invisible-island.net/cdk/ . Follow the
instructions in README file to install it.

19.1.1. Widget List

The following is the list of widgets provided with cdk and their description.

Widget Type Quick Description
===
Alphalist Allows a user to select from a list of words, with

the ability to narrow the search list by typing in a
few characters of the desired word.

Buttonbox This creates a multiple button widget.
Calendar Creates a little simple calendar widget.
Dialog Prompts the user with a message, and the user

can pick an answer from the buttons provided.
Entry Allows the user to enter various types of information.

97

NCURSES Programming HOWTO

File Selector A file selector built from Cdk base widgets. This
example shows how to create more complicated widgets
using the Cdk widget library.

Graph Draws a graph.
Histogram Draws a histogram.
Item List Creates a pop up field which allows the user to select

one of several choices in a small field. Very useful
for things like days of the week or month names.

Label Displays messages in a pop up box, or the label can be
considered part of the screen.

Marquee Displays a message in a scrolling marquee.
Matrix Creates a complex matrix with lots of options.
Menu Creates a pull-down menu interface.
Multiple Line Entry A multiple line entry field. Very useful

for long fields. (like a description
field)

Radio List Creates a radio button list.
Scale Creates a numeric scale. Used for allowing a user to

pick a numeric value and restrict them to a range of
values.

Scrolling List Creates a scrolling list/menu list.
Scrolling Window Creates a scrolling log file viewer. Can add

information into the window while its running.
A good widget for displaying the progress of
something. (akin to a console window)

Selection List Creates a multiple option selection list.
Slider Akin to the scale widget, this widget provides a

visual slide bar to represent the numeric value.
Template Creates a entry field with character sensitive

positions. Used for pre-formatted fields like
dates and phone numbers.

Viewer This is a file/information viewer. Very useful
when you need to display loads of information.

===

A few of the widgets are modified by Thomas Dickey in recent versions.

19.1.2. Some Attractive Features

Apart from making our life easier with readily usable widgets, cdk solves one frustrating problem with
printing multi colored strings, justified strings elegantly. Special formatting tags can be embedded in the
strings which are passed to CDK functions. For Example

If the string

"</B/1>This line should have a yellow foreground and a blue
background.<!1>"

98

NCURSES Programming HOWTO

given as a parameter to newCDKLabel(), it prints the line with yellow foreground and blue background.
There are other tags available for justifying string, embedding special drawing characters, etc. Please
refer to the man page cdk_display(3X) for details. The man page explains the usage with nice examples.

19.1.3. Conclusion

All in all, CDK is a well-written package of widgets, which if used properly can form a strong frame
work for developing complex GUI.

19.2. The dialog

Long long ago, in September 1994, when few people knew linux, Jeff Tranter wrote an article
(http://www2.linuxjournal.com/lj-issues/issue5/2807.html) on dialog in Linux Journal. He starts the
article with these words..

Linux is based on the Unix operating system, but also features a number of unique and useful kernel
features and application programs that often go beyond what is available under Unix. One little-known
gem is "dialog", a utility for creating professional-looking dialog boxes from within shell scripts. This
article presents a tutorial introduction to the dialog utility, and shows examples of how and where it can
be used

As he explains, dialog is a real gem in making professional-looking dialog boxes with ease. It creates a
variety of dialog boxes, menus, check lists, etc. It is usually installed by default. If not, you can
download it from Thomas Dickey (https://invisible-island.net/dialog/)’s site.

The above-mentioned article gives a very good overview of its uses and capabilities. The man page has
more details. It can be used in variety of situations. One good example is building of linux kernel in text
mode. Linux kernel uses a modified version of dialog tailored for its needs.

dialog was initially designed to be used with shell scripts. If you want to use its functionality in a c
program, then you can use libdialog. The documentation regarding this is sparse. Definitive reference is
the dialog.h header file which comes with the library. You may need to hack here and there to get the
required output. The source is easily customizable. I have used it on a number of occasions by modifying
the code.

19.3. Perl Curses Modules CURSES::FORM and
CURSES::WIDGETS

The perl module Curses, Curses::Form and Curses::Widgets give access to curses from perl. If you have
curses and basic perl is installed, you can get these modules from CPAN All Modules page

99

NCURSES Programming HOWTO

(http://www.cpan.org/modules/01modules.index.html). Get the three zipped modules in the Curses
category. Once installed you can use these modules from perl scripts like any other module. For more
information on perl modules see perlmod man page. The above modules come with good documentation
and they have some demo scripts to test the functionality. Though the widgets provided are very
rudimentary, these modules provide good access to curses library from perl.

Some of my code examples are converted to perl by Anuradha Ratnaweera and they are available in the
perl directory.

For more information see man pages Curses(3) , Curses::Form(3) and Curses::Widgets(3). These pages
are installed only when the above modules are acquired and installed.

20. Just For Fun !!!

This section contains few programs written by me just for fun. They don’t signify a better programming
practice or the best way of using ncurses. They are provided here so as to allow beginners to get ideas
and add more programs to this section. If you have written a couple of nice, simple programs in curses
and want them to included here, contact me (mailto:ppadala@gmail.com).

20.1. The Game of Life

Game of life is a wonder of math. In Paul Callahan
(http://www.math.com/students/wonders/life/life.html)’s words

The Game of Life (or simply Life) is not a game in the conventional sense. There
are no players, and no winning or losing. Once the "pieces" are placed in the
starting position, the rules determine everything that happens later.
Nevertheless, Life is full of surprises! In most cases, it is impossible to look
at a starting position (or pattern) and see what will happen in the future. The
only way to find out is to follow the rules of the game.

This program starts with a simple inverted U pattern and shows how wonderful life works. There is a lot
of room for improvement in the program. You can let the user enter pattern of his choice or even take
input from a file. You can also change rules and play with a lot of variations. Search on google
(https://www.google.com) for interesting information on game of life.

File Path: JustForFun/life.c

100

NCURSES Programming HOWTO

20.2. Magic Square

Magic Square, another wonder of math, is very simple to understand but very difficult to make. In a
magic square sum of the numbers in each row, each column is equal. Even diagonal sum can be equal.
There are many variations which have special properties.

This program creates a simple magic square of odd order.

File Path: JustForFun/magic.c

20.3. Towers of Hanoi

The famous towers of hanoi solver. The aim of the game is to move the disks on the first peg to last peg,
using middle peg as a temporary stay. The catch is not to place a larger disk over a small disk at any time.

File Path: JustForFun/hanoi.c

20.4. Queens Puzzle

The objective of the famous N-Queen puzzle is to put N queens on a N X N chess board without
attacking each other.

This program solves it with a simple backtracking technique.

File Path: JustForFun/queens.c

20.5. Shuffle

A fun game, if you have time to kill.

File Path: JustForFun/shuffle.c

20.6. Typing Tutor

A simple typing tutor, I created more out of need than for ease of use. If you know how to put your
fingers correctly on the keyboard, but lack practice, this can be helpful.

101

NCURSES Programming HOWTO

File Path: JustForFun/tt.c

21. References
• NCURSES man pages

• NCURSES FAQ at https://invisible-island.net/ncurses/ncurses.faq.html

• Writing programs with NCURSES by Eric Raymond and Zeyd M. Ben-Halim at
https://invisible-island.net/ncurses/ncurses-intro.html - somewhat obsolete. I was inspired by this
document and the structure of this HOWTO follows from the original document

102

	1. Introduction
	1.1. What is NCURSES?
	1.2. What we can do with NCURSES
	1.3. Where to get it
	1.4. Purpose/Scope of the document
	1.5. About the Programs
	1.6. Other Formats of the document
	1.6.1. Alternative formats
	1.6.2. Building from source

	1.7. Credits
	1.8. Wish List
	1.9. Copyright

	2. Hello World !!!
	2.1. Compiling With the NCURSES Library
	2.2. Dissection
	2.2.1. About initscr()
	2.2.2. The mysterious refresh()
	2.2.3. About endwin()

	3. The Gory Details
	4. Initialization
	4.1. Initialization functions
	4.2. raw() and cbreak()
	4.3. echo() and noecho()
	4.4. keypad()
	4.5. halfdelay()
	4.6. Miscellaneous Initialization functions
	4.7. An Example

	5. A Word about Windows
	6. Output functions
	6.1. addch() class of functions
	6.2. mvaddch(), waddch() and mvwaddch()
	6.3. printw() class of functions
	6.3.1. printw() and mvprintw
	6.3.2. wprintw() and mvwprintw
	6.3.3. vwprintw()
	6.3.4. A Simple printw example

	6.4. addstr() class of functions
	6.5. A word of caution

	7. Input functions
	7.1. getch() class of functions
	7.2. scanw() class of functions
	7.2.1. scanw() and mvscanw
	7.2.2. wscanw() and mvwscanw()
	7.2.3. vwscanw()

	7.3. getstr() class of functions
	7.4. Some examples

	8. Attributes
	8.1. The details
	8.2. attron() vs attrset()
	8.3. attrget()
	8.4. attr functions
	8.5. wattr functions
	8.6. chgat() functions

	9. Windows
	9.1. The basics
	9.2. Let there be a Window !!!
	9.3. Explanation
	9.4. The other stuff in the example
	9.5. Other Border functions

	10. Colors
	10.1. The basics
	10.2. Changing Color Definitions
	10.3. Color Content

	11. Interfacing with the key board
	11.1. The Basics
	11.2. A Simple Key Usage example

	12. Interfacing with the mouse
	12.1. The Basics
	12.2. Getting the events
	12.3. Putting it all Together
	12.4. Miscellaneous Functions

	13. Screen Manipulation
	13.1. getyx() functions
	13.2. Screen Dumping
	13.3. Window Dumping

	14. Miscellaneous features
	14.1. cursset()
	14.2. Temporarily Leaving Curses mode
	14.3. ACS variables

	15. Other libraries
	16. Panel Library
	16.1. The Basics
	16.2. Compiling With the Panels Library
	16.3. Panel Window Browsing
	16.4. Using User Pointers
	16.5. Moving and Resizing Panels
	16.6. Hiding and Showing Panels
	16.7. panelabove() and panelbelow() Functions

	17. Menus Library
	17.1. The Basics
	17.2. Compiling With the Menu Library
	17.3. Menu Driver: The work horse of the menu system
	17.4. Menu Windows
	17.5. Scrolling Menus
	17.6. Multi Columnar Menus
	17.7. Multi Valued Menus
	17.8. Menu Options
	17.9. The useful User Pointer

	18. Forms Library
	18.1. The Basics
	18.2. Compiling With the Forms Library
	18.3. Playing with Fields
	18.3.1. Fetching Size and Location of Field
	18.3.2. Moving the field
	18.3.3. Field Justification
	18.3.4. Field Display Attributes
	18.3.5. Field Option Bits
	18.3.6. Field Status
	18.3.7. Field User Pointer
	18.3.8. VariableSized Fields

	18.4. Form Windows
	18.5. Field Validation
	18.6. Form Driver: The work horse of the forms system
	18.6.1. Page Navigation Requests
	18.6.2. InterField Navigation Requests
	18.6.3. IntraField Navigation Requests
	18.6.4. Scrolling Requests
	18.6.5. Editing Requests
	18.6.6. Order Requests
	18.6.7. Application Commands

	19. Tools and Widget Libraries
	19.1. CDK (Curses Development Kit)
	19.1.1. Widget List
	19.1.2. Some Attractive Features
	19.1.3. Conclusion

	19.2. The dialog
	19.3. Perl Curses Modules CURSES::FORM and CURSES::WIDGETS

	20. Just For Fun !!!
	20.1. The Game of Life
	20.2. Magic Square
	20.3. Towers of Hanoi
	20.4. Queens Puzzle
	20.5. Shuffle
	20.6. Typing Tutor

	21. References

